New Bounds on the Minimum Density of a Vertex Identifying Code for the Infinite Hexagonal Grid *

Ari Cukierman Gexin Yu

January 20, 2011

Abstract

For a graph, G, and a vertex $v \in V(G)$, let $N[v]$ be the set of vertices adjacent to and including v. A set $D \subseteq V(G)$ is a vertex identifying code if for any two distinct vertices $v_{1}, v_{2} \in V(G)$, the vertex sets $N\left[v_{1}\right] \cap D$ and $N\left[v_{2}\right] \cap D$ are distinct and non-empty. We consider the minimum density of a vertex identifying code for the infinite hexagonal grid. In 2000, Cohen et al. constructed two codes with a density of $\frac{3}{7} \approx 0.428571$, and this remains the best known upper bound. Until now, the best known lower bound was $\frac{12}{29} \approx 0.413793$ and was proved by Cranston and Yu in 2009. We present three new codes with a density of $\frac{3}{7}$, and we improve the lower bound to $\frac{5}{12} \approx 0.416667$.

1 Introduction

The study of vertex identifying codes is motivated by the desire to detect failures efficiently in a multiprocessor network. Such a network can be modelled as an undirected graph, G, where $V(G)$ represents the set of processors and $E(G)$ represents the set of connections among processors. Suppose we place detectors on a subset of these processors. These detectors monitor all processors within a neighborhood of radius r and send a signal to a central controller when a failure occurs. We assume that no two failures occur simultaneously. A signal from a detector, d, indicates that a processor in the r-neighborhood of d has failed but provides no further information. Now, any given processor, p, might be in the r-neighborhood of several detectors, $d_{1}, d_{2}, d_{3} \ldots$ Then, when p fails, the central controller receives signals from $d_{1}, d_{2}, d_{3} \ldots$ Let us call $\left\{d_{1}, d_{2}, d_{3}, \ldots\right\}$ the trace of p in G. If each processor has a unique and non-empty trace, then the central controller can determine which processor failed simply by noting the detectors from which signals were received. In this case, we call the subset of processors on which detectors were placed an identifying code.

Vertex identifying codes were first introduced in 1998 by Karpovsky, Chakrabarty and Levitin [5]. The processors of the preceding paragraph become the vertices of a graph, and the processors on which detectors have been placed become the vertex subset called a vertex identifying code. In the example above, we considered detectors which monitor a neighborhood of radius r. In this paper, we concern ourselves with the case in which $r=1$.

Let $N_{i}(v)$ be the set of vertices at distance- i from a vertex, v, and let $N[v]=N_{1}(v) \cup\{v\}$.
Definition 1.1. Consider a graph, G. A set $D \subseteq V(G)$ is a vertex identifying code if
(i) For all $v \in V(G), N[v] \cap D \neq \emptyset$
(ii) For all $v_{1}, v_{2} \in V(G)$ where $v_{1} \neq v_{2}, N\left[v_{1}\right] \cap D \neq N\left[v_{2}\right] \cap D$

From Definition 1.1, we see that some graphs do not admit vertex identifying codes. In particular, if $N\left[v_{1}\right]=N\left[v_{2}\right]$ for some distinct $v_{1}, v_{2} \in V(G)$ then G does not admit a vertex identifying code because $N\left[v_{1}\right] \cap D=N\left[v_{2}\right] \cap D$ for any $D \subseteq V(G)$. On the other hand, if $N\left[v_{1}\right] \neq N\left[v_{2}\right]$ for all distinct $v_{1}, v_{2} \in V(G)$ then G admits a vertex identifying code because $V(G)$ is such a code.

[^0]Of particular interest are vertex identifying codes of minimal cardinality. When dealing with infinite graphs, we consider instead the density of a vertex identifying code, i.e., the ratio of the number of vertices in the code to the total number of vertices. Let G be an infinite graph, and let $D \subseteq V(G)$ be a vertex identifying code for G. Then, for some $v \in V(G)$, the set of vertices in D within distance- k of v is given by $\bigcup_{i=0}^{k} N_{i}(v) \cap D$. Let $\sigma(D, G)$ be the density of D in G. Then,

$$
\begin{equation*}
\sigma(D, G)=\limsup _{k \rightarrow \infty} \frac{\left|\bigcup_{i=0}^{k} N_{i}(v) \cap D\right|}{\left|\bigcup_{i=0}^{k} N_{i}(v)\right|} \tag{1.1}
\end{equation*}
$$

Let $\sigma_{0}(G)$ be the minimum density of a vertex identifying code for G; that is,

$$
\begin{equation*}
\sigma_{0}(G)=\min _{D}\{\sigma(D, G)\} \tag{1.2}
\end{equation*}
$$

Karpovsky et al. [5] considered the minimum density of vertex identifying codes for the infinite triangular $\left(G_{T}\right)$, square $\left(G_{S}\right)$ and hexagonal $\left(G_{H}\right)$ grids. They showed $\sigma_{0}\left(G_{T}\right)=1 / 4$. In 1999, Cohen et al. [2] proved $\sigma_{0}\left(G_{S}\right) \leq 7 / 20$, and, in 2005, Ben-Haim and Litsyn [1] completed the proof by showing $\sigma_{0}\left(G_{S}\right) \geq 7 / 20$.

We concern ourselves in this paper with $\sigma_{0}\left(G_{H}\right)$. In 1998, Karpovsky et al. [5] showed $\sigma_{0}\left(G_{H}\right) \geq 2 / 5=$ 0.4. In 2000, Cohen et al. [3] improved this result to $\sigma_{0}\left(G_{H}\right) \geq 16 / 39 \approx 0.410256$ and constructed two codes with a density of $3 / 7 \approx 0.428571$ implying $\sigma_{0}\left(G_{H}\right) \leq 3 / 7$. In 2009, Cranston and Yu [4] proved $\sigma_{0}\left(G_{H}\right) \geq 12 / 29 \approx 0.413793$. For other results on identifying codes for the hexagonal grid, see [6, 7].

In this paper, we present three new codes with a density of $3 / 7$ and prove $\sigma_{0}\left(G_{H}\right) \geq 5 / 12 \approx 0.416667$. In conclusion, it is now known that $5 / 12 \leq \sigma_{0}\left(G_{H}\right) \leq 3 / 7$.

Figure 1.1: Three new codes with a density of $3 / 7$. The solid vertices are in the code.
Suppose β is an upper bound on $\sigma_{0}\left(G_{H}\right)$. To prove this, we need only show the existence of a code, D, with $\sigma\left(D, G_{H}\right) \leq \beta$. When constructing such codes, we usually look for tiling patterns. Since the pattern repeats ad infinitum, the density of one tile is the density of the whole graph. Figure 1.1 shows three new codes for the infinite hexagonal grid with a density of $3 / 7$.

Theorem 1.2. The minimum density of a vertex identifying code for the infinite hexagonal grid is greater than or equal to 5/12.

To prove Theorem 1.2, we employ the discharging method. Let D be an arbitrary vertex identifying code for G_{H}. We assign 1 "charge" to each vertex in D which we then redistribute so that every vertex in G_{H} retains at least $5 / 12$ charge. The charge is redistributed in accordance with a set of "Discharging Rules". Since D was chosen arbitrarily, we then conclude that $5 / 12$ is a lower bound on $\sigma_{0}\left(G_{H}\right)$.

As the proof of Theorem 1.2 is rather lengthy, we include a sketch of the proof in Section 2. In Section 3, we introduce several properties of vertex identifying codes for G_{H} which we will reference throughout the paper. Section 4 is devoted to terminology and notations; the vast majority of relevant notions are defined here. In Section 5, we state several lemmas concerning the structure of vertex identifying codes for G_{H}. However, we defer the proofs of these lemmas to Section 7. The main result of this paper, Theorem 1.2, is proved in Section 6.

For the rest of the paper, if not explicitly stated, D is to be interpreted as a vertex identifying code for the infinite hexagonal grid.

2 Sketch of the Proof

As mentioned in the introduction, our proof of Theorem 1.2 makes use of the discharging method. We assign 1 charge to each vertex in D and then redistribute this charge so that each vertex in G_{H} retains at least $5 / 12$. To design the proper discharging rules, we start with the following (Rule 1 in Section 6):

If a vertex, v, is not in D and has k neighbors in D, then v receives $\frac{5}{12 k}$ from each of these neighbors.
We can easily verify that Rule 1 suffices to allow each vertex in $G_{H} \backslash D$ to retain $5 / 12$ charge (Claim 6.1). As a result, the remaining discharging rules are concerned exclusively with vertices in D. Now, any vertex, v, in D with a neighbor in $G_{H} \backslash D$ loses charge by Rule 1 . We show in Section 6 that only one type of vertex loses too much by Rule 1 ; we call such a vertex a poor 1-cluster (Definition 4.1). Consequently, we must find charge to send to poor 1-clusters from nearby vertices. We find that it is helpful to consider a cluster (Definition 3.1) as a single entity. Thus we first need to determine the surplus charge each cluster may have after Rule 1.

We observe that some 1-clusters may have surplus charge and that their surplus differs according to the neighbors they may have; for this reason we define non-poor 1-clusters (Definition 4.12) and one-third vertices (Definition 4.13). In Lemmas 5.2-5.4, we determine how many poor 1-clusters can lie in the neighborhood of a non-poor 1 -cluster, and then in Rules $2,3 \mathrm{~d}$ and 3e, we design the appropriate discharging rules to distribute the surplus charge. In Claim 6.4, we show that non-poor 1-clusters ultimately retain a charge of at least 5/12.

For 3^{+}-clusters, the situation is more complicated. We first see a difference of surplus charge according to the distribution of vertices at distance-2 from a given 3^{+}-cluster; for this reason we define open/closed k-clusters (Definition 4.3), crowded/uncrowded k-clusters (Definition 4.4) and the P-function (Definition 4.5). These definitions allow us to distinguish among 3^{+}-clusters with varying amounts of surplus charge. We will see in Section 6 that for very large k, a k-cluster can always afford to send charge to all nearby poor 1 -clusters. Consequently, we are mostly concerned with k-clusters with $3 \leq k \leq 6$. In Lemmas 5.6-5.16, we determine the number of poor 1-clusters that can lie in the neighborhood of a given k-cluster. Discharging Rules 3a-3c are designed in accordance with these lemmas to send charge from 3^{+}-clusters to poor 1-clusters lying in a distance-2 or distance-3 neighborhood.

Now, some poor 1-clusters do not lie in a neighborhood that receives charge by Rule 3 . We call these very poor 1-clusters (Definition 4.14), and we distinguish between two orientations: symmetric and asymmetric (Definition 4.15). In Lemmas 5.17, 5.20 and 5.24 we scan the neighborhood of a very poor 1-cluster for clusters with charge available for redistribution after Rule 3. Crucially, we find in Lemma 5.20 that if there is no other way to squeeze charge for a given very poor 1-cluster from a single nearby cluster, there must be type-1 paired 3-clusters or type-2 paired 3-clusters (Definition 4.9) in the neighborhood. These are structures which tend to form in the extended neighborhood of an asymmetric very poor 1-cluster and which always have extra charge after Rule 3. In order to reserve this extra charge for very poor 1-clusters, several discharging rules make exceptions for type-1 and type-2 paired 3-clusters. That this creates no new deficiency of charge is proved in Section 6. We prove some properties of type-1 and type-2 paired 3-clusters in Lemmas 5.25 and 5.26. Discharging Rules 4-7 are designed in accordance with the above-mentioned lemmas to send charge to very poor 1-clusters.

On an additional note, the structure of type-1 and type-2 paired 3-clusters is very specific, and this forces us to introduce some very specific notions (for example, Definitions 4.5 and 4.6). This is done so that our analysis can penetrate to the properties of individual vertices. As a result, the proofing process is somewhat tedious though more or less straightforward.

3 General Structural Properties

Definition 3.1. A component of the subgraph induced by D is called a cluster. A cluster containing k vertices is called a k-cluster; a cluster containing k or more vertices is called a \mathbf{k}^{+}-cluster. Let D_{k} be the set of all vertices in k-clusters; and let \mathcal{K}_{k} be the set of all k-clusters. Let $d_{C}(v)$ be the degree of a vertex, v, in a 3^{+}-cluster, C; and let $\Delta(C)=\max \left\{d_{C}(v): v \in C\right\}$.

Proposition 3.2. There exist no 2-clusters.
Proof. Suppose by contradiction that there exists a 2-cluster, C, and let $V(C)=\{v, w\}$. Then, $N[v] \cap D=$ $\{v, w\}$ and $N[w] \cap D=\{v, w\}$. Now, if $N[v] \cap D=N[w] \cap D$, then $v=w$ (Definition 1.1), which is a contradiction.

Corollary 3.3. If a vertex, v, is not in a 3^{+}-cluster, then either v is not in D or v is a 1-cluster.
Proposition 3.4. If a vertex not in D has 2 adjacent vertices not in D, then the remaining adjacent vertex is in a 3^{+}-cluster.

Proof. Consider a vertex, v, such that that $N_{1}(v)=\{a, b, c\}$ and let $a, b, v \notin D$. Suppose by contradiction that $c \notin D_{3^{+}}$. Then, $c \notin D$ or $c \in D_{1}$ (Corollary 3.3). If $c \notin D$, then $N[v] \cap D=\emptyset$, which is a contradiction (Definition 1.1). If $c \in D_{1}$, then $N[v] \cap D=N[c] \cap D=\{c\}$; therefore, $c=v$ (Definition 1.1), which is a contradiction.

Proposition 3.5. Each of the vertices adjacent to a 1 -cluster, v, has at least one adjacent vertex in $D \backslash\{v\}$.
Proof. Let $v \in D_{1}$, and let u be an adjacent vertex. Suppose by contradiction that u has no adjacent vertices in $D \backslash\{v\}$. Then, $v \in D_{3^{+}}$(Proposition 3.4), which is a contradiction.

Proposition 3.6. Each leaf of a 3^{+}-cluster, C, has at least one distance-2 vertex in $D \backslash C$.
Proof. Let v be a leaf of a 3^{+}-cluster, C. Then, exactly 2 of the vertices adjacent to v are not in D; let u and w be these vertices. Suppose by contradiction that v has no distance- 2 vertices in $D \backslash C$. Then, $N[u] \cap D=N[w] \cap D=\{v\}$; therefore, $u=w$ (Definition 1.1), which is a contradiction.

4 Terminology and Notations

We introduce the following convention which we will use throughout the paper. Let G be a graph, and suppose $D \subseteq V(G)$ is a vertex identifying code for G. In the figures, we use a solid vertex to denote that a vertex is in D, and we use a hollow vertex to denote that a vertex is not in D. The status of all other vertices is undetermined. In Figure 4.1, for instance, $u \in D$ and $v \notin D$, while the status of w is undetermined.

Figure 4.1

Definition 4.1. A 1-cluster with exactly 3 distance- 2 vertices in D is called a poor 1 -cluster. Let D_{1}^{p} be the set of all poor 1-clusters.
Corollary 4.2. Each of the neighbors of a poor 1 -cluster, v, has exactly one neighbor in $D \backslash\{v\}$.
Proof. This follows from Proposition 3.5 and Definition 4.1.
Definition 4.3. For $k \geq 3$, let C be a k-cluster with $\Delta(C)=2$. If none of the non-leaf vertices of C has a distance-2 vertex in $D \backslash C$, then C is an open k-cluster. If at least one of the non-leaf vertices of C has a distance- 2 vertex, v, in $D \backslash C$, then C is a closed k-cluster and v closes C. Let D_{k}^{o} be the set of all vertices in open k-clusters and D_{k}^{c} the set of all vertices in closed k-clusters; let \mathcal{K}_{k}^{o} be the set of all open k-clusters and \mathcal{K}_{k}^{c} the set of all closed k-clusters.

Definition 4.4. If an open k-cluster, C, has exactly 2 distance- 2 vertices in D, both of which are poor 1 -clusters, then C is uncrowded. Otherwise, C is crowded.

Definition 4.5. For a given cluster, C, let $P(C)=\sum_{v \in C}\left|N_{2}(v) \cap D \backslash C\right|$.
Definition 4.6. Let C be the 3 -cluster shown in Figure 4.2a. Vertices a and b are in the head positions of $C ; c$ and e are in the shoulder positions; f and g are in the arm positions; h and m are in the hand positions; i and k are in the foot positions; j is in the tail position; and n and q are in the fin positions. If q is not in D, then b, d, e, g, k and m are on the finless side of C. If d is in D, then b, e, g, k, m and q are on the closed side of C.

(a) 3-Cluster

(b) Linear 4-Cluster

(c) Curved 4-Cluster

Figure 4.2

Definition 4.7. Let C be a 4 -cluster with $\Delta(C)=2$. If the leaves of C do not lie on the same 6 -cycle, then C is a linear 4 -cluster. Otherwise, C is a curved 4 -cluster. Let C_{1} be the linear 4 -cluster shown in Figure 4.2b. Vertices a and b are in the one-turn positions of C_{1}. Let C_{2} be the curved 4-cluster shown in Figure 4.2c. Vertices c and d are in the backwards positions of C_{2}.

Definition 4.8. A vertex, v, is distance- k from a cluster, C, if k is the minimum distance from v to any of the vertices of C. If $k \leq \ell$, then v is within distance- ℓ of C. If a vertex, v, is within distance- 3 of a cluster, C, then v is nearby C.

(a) Paired 3-Clusters

(b) Type-1 Paired 3-Clusters

(c) Type-2 Paired 3-Clusters

Figure 4.3

Definition 4.9. Let C_{1} be the 3 -cluster described by a, j and c in Figure 4.3a, and let C_{2} be the 3-cluster described by s, k and r. Then, C_{1} and C_{2} are paired 3 -clusters. Let C_{3} be the 3 -cluster described by b, d and e in Figure 4.3b, and let C_{4} be the 3-cluster described by f, g and h. Then, C_{3} and C_{4} are type-1 paired, and C_{3} is type- $\mathbf{1}$ paired on top. Let C_{5} be the 3 -cluster described by i, m and n in Figure 4.3c, and let C_{6} be the 3 -cluster described by p, q and t. Then, C_{5} and C_{6} are type- 2 paired.

Corollary 4.10. If a 3 -cluster, C, is type- 1 paired, then C is not type- 2 paired, and vice versa.
Definition 4.11. A poor 1 -cluster, v, is stealable if v is distance- 3 from a 4^{+}-cluster and distance- 2 from a 3^{+}-cluster, C, such that if C is an open 3 -cluster, then
(i) v is not in a shoulder position;
(ii) if v is in an arm position, then C is neither type- 1 nor type-2 paired.

Definition 4.12. A 1 -cluster that is not poor is called a non-poor 1 -cluster. Let $D_{1}^{n p}$ be the set of all non-poor 1-clusters. If 3 non-poor 1-clusters, u, v and w, are adjacent to the same one-third vertex, then u, v and w are referred to as a group of non-poor 1-clusters. A vertex, v, is distance- k from a group of non-poor 1 -clusters, H, if v is distance- k from any of the 1 -clusters in H.

Definition 4.13. If a vertex, v, is not in D and has 3 neighbors in D, then v is called a one-third vertex.
Definition 4.14. If a poor 1 -cluster, v, is neither distance- 2 from a 3^{+}-cluster or a non-poor 1 -cluster nor distance- 3 from a closed 3 -cluster or 4^{+}-cluster, then v is called a very poor $\mathbf{1}$-cluster. Let $D_{1}^{v p}$ be the set of all very poor 1 -clusters.

(a) Symmetric Orientation

(b) Asymmetric Orientation

Figure 4.4

Definition 4.15. If a very poor 1 -cluster, v, has 3 distance- 2 vertices in D which are all distance- 4 from each other, then v is in a symmetric orientation (see Figure 4.4a). A very poor 1-cluster which is not in a symmetric orientation is in an asymmetric orientation (see Figure 4.4b). The vertex u in Figure 4.4b is in the u-position of v, the vertex w is in the w-position of v, and the vertex x is in the \mathbf{x}-position of v.

5 Structural Lemmas

In this section, we state several lemmas concerning the structure of a vertex identifying code for the infinite hexagonal grid. As the primary purpose of these lemmas is to abridge the proof of Theorem 1.2, we defer the proofs of all lemmas to page 17. Additionally, we defer the proofs of Proposition 5.1 and Corollaries 5.22 and 5.23.

Proposition 5.1. If a poor 1-cluster, v, is distance-2 from exactly one of the 1-clusters in a group of nonpoor 1-clusters, then v is distance-2 from an open 3-cluster or within distance-3 of a closed 3-cluster or 4^{+}-cluster.

Lemma 5.2. Consider a group of non-poor 1-clusters, H. There exist at most 2 poor 1-clusters which are distance-2 from H and neither distance-2 from an open 3-cluster nor within distance-3 of a closed 3-cluster or 4^{+}-cluster.

Lemma 5.3. Let v be a one-third vertex, and let v have exactly 2 adjacent 1-clusters, c and d. Each of c and d has at most one distance-2 poor 1-cluster that is neither distance-2 from an open 3-cluster nor within distance-3 of a closed 3 -cluster or 4^{+}-cluster.

Lemma 5.4. If a one-third vertex has exactly one adjacent 1 -cluster, d, then d has at most 2 distance- 2 poor 1-clusters.

Lemma 5.5. A 3-cluster has at most one finless side.
Lemma 5.6. Let C_{1} be a closed 3-cluster with $P\left(C_{1}\right)=3$.
(i) C_{1} has at most 8 nearby poor 1-clusters. If C_{1} has 8 such clusters, at least one of the poor 1-clusters at distance-3, v, is distance- 2 from another 3^{+}-cluster, C_{2}, such that
(a) if C_{2} is an open 3-cluster, then v is not in a shoulder position;
(b) if C_{2} is an open 3 -cluster and v is in an arm position, then C_{2} is not type-1 paired; if C_{2} is type-2 paired, then C_{1} is type-2 paired with C_{2}.
(ii) If neither the shoulder positions nor the tail position are in D, then C_{1} has at most 5 nearby poor 1 -clusters.

Lemma 5.7. Let C be a closed 3-cluster with $P(C)=4$. If C is adjacent to a one-third vertex, then C has at most 8 nearby poor 1-clusters. Furthermore, if an arm position or a foot position of C is a poor 1-cluster, then C has at most 7 nearby poor 1-clusters. If 2 arm or foot positions are poor 1-clusters, then C has at most 6 nearby poor 1-clusters.

Lemma 5.8. Let C_{1} be a linear open 4-cluster with $P\left(C_{1}\right)=2$.
(i) C_{1} has at most 8 nearby poor 1-clusters. Furthermore, if C_{1} has 8 such clusters, then at least 2 of the distance-3 poor 1-clusters are stealable; if C_{1} has 7 such clusters, then at least one is stealable.
(ii) If one one-turn position is not in D, then C_{1} has at most 6 nearby poor 1-clusters. If C_{1} has exactly 6 such clusters, then at least one of the distance-3 poor 1-clusters is stealable.
(iii) If neither one-turn position is in D, then C_{1} has at most 4 nearby poor 1-clusters.

Lemma 5.9. Let C be a linear 4-cluster with $P(C)=3$.
(i) If C is adjacent to no one-third vertices, then C has at most 9 nearby poor 1-clusters.
(ii) If C is adjacent a one-third vertex, then C has at most 6 nearby poor 1-clusters.

Lemma 5.10. Let C_{1} be a curved open 4-cluster with $P\left(C_{1}\right)=2$.
(i) C_{1} has at most 8 nearby poor 1-clusters. Furthermore, if C_{1} has 8 such clusters, then at least 2 of the distance-3 poor 1-clusters are stealable; if C_{1} has 7 such clusters, then at least one is stealable.
(ii) If one backwards position is not in D, then C_{1} has at most 6 nearby poor 1-clusters. If C_{1} has exactly 6 such 1-clusters, then at least one of the distance-3 poor 1-clusters is stealable.
(iii) If neither backwards position is in D, then C_{1} has at most 2 nearby poor 1-clusters.

Lemma 5.11. Let C be a curved 4 -cluster with $P(C)=3$.
(i) If C is adjacent to no one-third vertices, then C has at most 11 nearby poor 1-clusters. Furthermore, if C has k backwards positions not in D, then C has at most $11-k$ nearby poor 1-clusters.
(ii) If C is adjacent to a one-third vertex, then C has at most 6 nearby poor 1-clusters.

Lemma 5.12. An open 5 -cluster, C, has at most 9 nearby poor 1 -clusters. If C has exactly 9 such 1 -clusters, then at least one of the distance-3 poor 1-clusters is stealable.

Lemma 5.13. If a 4-cluster, C, has one degree-3 vertex and $P(C)=3$, then C has at most 8 nearby poor 1-clusters.

Lemma 5.14. If a 5-cluster, C, has one degree-3 vertex, then C has at most 12 nearby poor 1-clusters.
Lemma 5.15. An open 6 -cluster, C, with $\Delta(C)=2$ has at most 10 nearby poor 1 -clusters.
Lemma 5.16 was proved by Cranston and Yu [4, p. 14] in 2009. We state it here without proof.
Lemma 5.16. For $k \geq 3$, a k-cluster has at most $k+8$ nearby clusters.
Lemma 5.17. Let v be a very poor 1-cluster in a symmetric orientation, and let a, b and c be the vertices in D at distance-2 from v. There exist 3 open 3 -clusters, C_{1}, C_{2} and C_{3}, such that v is in a head position of all 3 and exactly one of a, b and c is in a shoulder position of each of C_{1}, C_{2} and C_{3}. Furthermore, if each of C_{1}, C_{2} and C_{3} is uncrowded, then each of a, b and c is distance- 3 from a closed 3 -cluster or 4^{+}-cluster.

Corollaries 5.18 and 5.19 follow directly from the proof of Lemma 5.17.
Corollary 5.18. None of the open 3 -clusters of which a very poor 1 -cluster in a symmetric orientation is in a head position is type-1 paired on top.

Corollary 5.19. Each of the vertices in D at distance-2 from a very poor 1-cluster in a symmetric orientation is distance-2 from no other very poor 1-cluster.

Lemma 5.20. Let v be a very poor 1-cluster, and let u, w and x be in the u-position, w-position and x position, respectively, of v. There exists an open 3 -cluster, C_{0}, such that v and x are in the head positions and w is in a shoulder position of C_{0}; and one of the following holds:
(i) C_{0} is crowded.
(ii) There exists a closed 3-cluster or 4^{+}-cluster at distance-3 from w.
(iii) There exists an open 3-cluster, C, such that the tail position of C is in D and u, v or w is in the hand position on the finless side of C.
(iv) There exists a leaf, ℓ, of a 4^{+}-cluster, C, at distance- 2 from u such that u is the only vertex in $D \backslash C$ at distance-2 from ℓ. If C is a linear 4-cluster, then C has at most one one-turn position. If C is a curved 4-cluster, then C has at most one backwards position in D.
(v) There exists a leaf, ℓ, of a closed 3-cluster, C, at distance-2 from u such that u is the only vertex in $D \backslash C$ at distance-2 from ℓ and u is in a foot or arm position. Either C is type-2 paired and u is in the arm position on the closed side of C, or C has at most 6 nearby poor 1-clusters.
(vi) There exists an open 3-cluster, C, such that v or w is in a hand position of C and the hand and arm positions on the opposite side of C are both in D.
(vii) There exists an open 3-cluster, C, such that u is in a foot position and C is type-1 paired on top.

Corollary 5.21 follows directly from the proof of Lemma 5.20.
Corollary 5.21. Let v be a very poor 1-cluster in an asymmetric orientation, and let w be in the w-position of v. The open 3 -cluster of which v is in a head position and w is in a shoulder position is not type-1 paired on top.

Corollary 5.22. Let u and w be vertices in the u-position and w-position, respectively, of a very poor 1 -cluster, v. Neither u nor w is distance-2 from any very poor 1-cluster other than v.

Corollary 5.23. Consider a very poor 1-cluster, v, in an asymmetric orientation, and let x be in the x position of v. If x is a very poor 1-cluster, then x is in an asymmetric orientation and v is in the x-position of x.

Lemma 5.24. If a very poor 1 -cluster is in a head position of an open 3 -cluster, C, then both shoulder positions of C are in D.

Lemma 5.25. If a poor 1-cluster, v, is in a shoulder or arm position of an open 3-cluster that is type-1 paired on top, then v is nearby another 3^{+}-cluster, C_{2}, such that if C_{2} is an open 3-cluster then v is distance- 2 from C_{2} but not in an arm position and C_{2} is not type-1 paired on top.

Lemma 5.26. Let C_{1} be a closed 3 -cluster that is type-2 paired with the open 3 -cluster, C_{2}. If C_{1} has 7 nearby poor 1-clusters, then the arm position, n, of C_{2} is in D and the hand position, k, on the same side is not in D. Furthermore, if n is a poor 1-cluster, then n is nearby a third 3^{+}-cluster, C_{3}, such that if C_{3} is an open 3-cluster then n is distance-2 from C_{3} but not in an arm position and C_{3} is not type-1 paired on top.

6 Proof of Theorem 1.2

We employ the discharging method. Suppose each vertex in D has 1 charge. We redistribute this charge so that each vertex in G_{H} has at least $\frac{5}{12}$ charge. Below are the discharging rules:

1. If a vertex, v, is not in D and has k neighbors in D, then v receives $\frac{5}{12 k}$ from each of these neighbors.
2. Let $v_{\frac{1}{3}}$ be a one-third vertex, and let a, b and c be the vertices adjacent to $v_{\frac{1}{3}}$.
(a) If a and b are 1 -clusters and c is in a 3^{+}-cluster, C, then each of a and b receives $\frac{1}{72}$ from C.
(b) If a is a 1 -cluster and b and c are in 3^{+}-clusters, C_{1} and C_{2}, then a receives $\frac{1}{36}$ from each of C_{1} and C_{2}. If $C_{1}=C_{2}$, then a receives $2 \cdot \frac{1}{36}=\frac{1}{18}$ from C_{1}.
3. Let v be a poor 1 -cluster.
(a) If v is distance- 2 from a closed 3 -cluster or 4^{+}-cluster, C, then v receives $\frac{1}{24}$ from C.
(b) If v is distance- 2 from an open 3 -cluster, C, and has not received charge by previous rules, then v receives $\frac{1}{24}$ from C unless (a) C is type- 1 paired on top and v is in a shoulder or arm position, or (b) C is type-2 paired and v is in an arm position.
(c) If v is distance- 3 from a closed 3 -cluster or 4^{+}-cluster, C, and has not received charge by previous rules, then v receives $\frac{1}{24}$ from C unless C is a closed 3 -cluster and v is in the arm position of an open 3 -cluster that is type-2 paired with C.
(d) Let h be a non-poor 1-cluster that is not in a group of non-poor 1-clusters. If v is distance- 2 from h and has not received charge by previous rules, then v receives $\frac{1}{24}$ from h.
(e) If v is distance-2 from a group of non-poor 1-clusters, H, and has not received charge by previous rules, then v receives $\frac{1}{24}$ from H.
4. If a closed 3-cluster, C_{1}, and an open 3-cluster, C_{2}, are type-2 paired and the arm position of C_{2} is in D and the hand position on the same side is not in D, then C_{1} receives $\frac{1}{24}$ from C_{2}.
5. If a very poor 1 -cluster, v, is in a head position of a crowded open 3 -cluster, C_{0}, then v receives $\frac{1}{24}$ from C_{0}.

6 . Let v be a very poor 1 -cluster in a symmetric orientation, and let a be a distance- 2 poor 1 -cluster. If a is in a shoulder position of an open 3 -cluster and distance- 3 from a closed 3 -cluster or 4^{+}-cluster, C, then a receives $\frac{1}{24}$ from C in addition to any charge received by previous rules and v receives $\frac{1}{24}$ from a.
7. Let v be a very poor 1 -cluster in an asymmetric orientation, and let u, and w be poor 1-clusters in the u-position and w-position, respectively, of v. The following applies only if v does not receive charge by Discharging Rule 5.
(a) If w is distance- 3 from a closed 3 -cluster or 4^{+}-cluster, C, then w receives $\frac{1}{24}$ from C in addition to any charge received by previous rules and v receives $\frac{1}{24}$ from w.
(b) Let C be an open 3-cluster, and let the tail position of C be in D. If u, v or w is in the hand position on the finless side of C, then u, v or w, respectively, receives $\frac{1}{24}$ from C in addition to any charge received by previous rules. If u or w receives this charge, then v receives $\frac{1}{24}$ from u or w, respectively.
(c) If u distance-2 from a leaf, ℓ, of a type-2 paired closed 3 -cluster, a closed 3 -cluster with at most 6 nearby poor 1 -clusters or a 4^{+}-cluster, C, such that u is not in a shoulder or tail position, a one-turn position or a backwards position of a closed 3-cluster, a linear 4-cluster or a curved 4 -cluster, respectively, and u is the only vertex in $D \backslash C$ at distance- 2 from ℓ, then u receives $\frac{1}{24}$ from C in addition to any charge received by previous rules and v receives $\frac{1}{24}$ from u.
(d) Let C be an open 3 -cluster, and let the hand and arm positions on one side of C be in D. If v or w is in the hand position on the other side of C, then v or w, respectively, receives $\frac{1}{24}$ from C in addition to any charge received by previous rules. If w receives this charge, then v receives $\frac{1}{24}$ from w.
(e) Let C be an open 3-cluster that is type-1 paired on top. If u is in the foot position of C, then u receives $\frac{1}{24}$ from C in addition to any charge received by previous rules and v receives $\frac{1}{24}$ from u.

Now we verify that the above discharging rules allow each vertex in G_{H} to retain at least $\frac{5}{12}$ charge. For a given vertex, v, let $f(v)$ be the final charge of v and let $f_{n}(v)$ be the charge of v after Discharging Rule n. And for a given k-cluster, C, where $k \geq 3$, let $f(C)$ be the final charge of C and let $f_{n}(C)$ be the charge of C after Discharging Rule n; note that $f(C) \geq \frac{5 k}{12}$ immediately implies that each vertex in C can retain at least $\frac{5}{12}$ charge.

If $v \in V\left(G_{H}\right)$, then $v \notin D$ or $v \in D_{1}$ or $v \in D_{3}$ or $v \in D_{4^{+}}$. We consider vertices not in D in Claim 6.1. We partition D_{1} such that $D_{1}=\left(D_{1}^{p} \backslash D_{1}^{v p}\right) \cup D_{1}^{n p} \cup D_{1}^{v p}$, and we consider each case separately in Claims 6.3, 6.4 and 6.5 , respectively. Rather than considering individual vertices in D_{3}, we consider \mathcal{K}_{3}. We partition \mathcal{K}_{3} such that $\mathcal{K}_{3}=\mathcal{K}_{3}^{o} \cup \mathcal{K}_{3}^{c}$, and we consider each case separately in Claims 6.7 and 6.11 , respectively. We defer our discussion of 4^{+}-clusters until after Claim 6.11.

Claim 6.1. If a vertex, v, is not in D, then $f(v)=\frac{5}{12}$.
Proof. Let $v \notin D$, and suppose v has k neighbors in D. Then, by Discharging Rule $1, v$ receives $\frac{5}{12 k}$ from each of these neighbors. That is, $f(v)=f_{1}(v)=k \cdot \frac{5}{12 k}=\frac{5}{12}$.
Proposition 6.2. Any poor 1-cluster at distance-2 from an open 3-cluster or within distance-3 of a closed 3 -cluster or 4^{+}-cluster receives charge by Discharging Rules 3a-3c.

Proof. Let $v \in D_{1}^{p}$ such that v is distance-2 from an open 3-cluster or within distance-3 of a closed 3-cluster or 4^{+}-cluster. Then, by Rules $3 \mathrm{a}-3 \mathrm{c}, v$ receives $\frac{1}{24}$ from a nearby 3^{+}-cluster except, potentially, in 2 cases. In the first case, v is in a shoulder or arm position of an open 3 -cluster which is type- 1 paired on top. But, by Lemma $5.25, v$ is nearby another 3^{+}-cluster, C_{1}, such that if C_{1} is an open 3 -cluster then v is distance- 2 from C_{1} but not in an arm position and C_{1} is not type-1 paired on top; therefore, v receives $\frac{1}{24}$ from C_{1} by Discharging Rules 3a-3c. In the second case, v is in an arm position of an open 3 -cluster which is type- 2 paired with a closed 3 -cluster. But, by Lemma $5.26, v$ is nearby a third 3^{+}-cluster, C_{2}, such that if C_{2} is an open 3-cluster then v is distance-2 from C_{2} but not in an arm position and C_{2} is not type- 1 paired on top; therefore, v receives $\frac{1}{24}$ from C_{2} by Discharging Rules 3a-3c.

Claim 6.3. If a poor 1 -cluster, v, is not very poor, then $f(v)=\frac{5}{12}$.

Proof. Let $v \in D_{1}^{p} \backslash D_{1}^{v p}$. Then, v must send charge to all 3 neighbors, each of which has exactly 2 neighbors in D. That is, $f_{1}(v)=1-3 \cdot \frac{5}{12 \cdot 2}=\frac{9}{24}$. But v is not very poor; therefore, v is distance- 2 from a 3^{+}-cluster or non-poor 1-cluster or distance-3 from a closed 3 -cluster or 4^{+}-cluster. If v is distance- 2 from an open 3 -cluster or within distance-3 of a closed 3 -cluster or 4^{+}-cluster, then v receives $\frac{1}{24}$ by Rules $3 \mathrm{a}-3 \mathrm{c}$ (Proposition 6.2); if not, then v receives charge from a distance- 2 non-poor 1 -cluster by Rules $3 \mathrm{~d}-3 \mathrm{e}$. Thus, we have shown that v will receive $\frac{1}{24}$ from a nearby cluster. Therefore, $f_{3}(v)=f_{1}(v)+\frac{1}{24}=\frac{9}{24}+\frac{1}{24}=\frac{5}{12}$. If v is distance- 2 from a very poor 1 -cluster, w, then v may need to receive charge from a nearby cluster and send charge to w by Rules $6-7$. If w is in a symmetric orientation, then v is not distance- 2 from any very poor 1 -cluster other than w (Corollary 5.19). If w is in an asymmetric orientation and v is in the u-position or w-position of w, then v is not distance- 2 from any very poor 1 -cluster other than w (Corollary 5.22). Thus, if Rules 6-7 require v to receive and send charge, then v must only send charge to one very poor 1 -cluster. Then, if Rule 6 is applicable, v receives $\frac{1}{24}$ and sends $\frac{1}{24}$. The same is true of Rules $7 \mathrm{a}-7 \mathrm{e}$. Therefore, Rules 6-7 have no effect on the final charge of v. Therefore, $f(v)=f_{7}(v)=f_{3}(v)=\frac{5}{12}$.

Claim 6.4. For every non-poor 1-cluster, $v, f(v) \geq \frac{5}{12}$.
Proof. Let $v \in D_{1}^{n p}$. Then, v must send charge to all 3 of its neighbors, at least one of which has 3 neighbors in D. Therefore, $f_{1}(v) \geq 1-\left(2 \cdot \frac{5}{12 \cdot 2}+\frac{5}{12 \cdot 3}\right)=\frac{4}{9}$.

Suppose v is in a group of non-poor 1-clusters, H. Then, $f_{1}(H) \geq 3 \cdot f_{1}(v)=\frac{4}{3}$. By Discharging Rule 3e, H may need to send charge to distance-2 poor 1-clusters that do not receive charge by Rules 3a-3d; therefore, H must send charge to a distance-2 poor 1-cluster, u, only if u is neither distance-2 from an open 3-cluster nor within distance-3 of a closed 3 -cluster or 4^{+}-cluster (Proposition 6.2). Then, H must send charge to at most 2 distance-2 poor 1-clusters (Lemma 5.2). Therefore, $f(H)=f_{3}(H) \geq f_{1}(H)-2 \cdot \frac{1}{24} \geq \frac{4}{3}-\frac{1}{12}=\frac{15}{12}=3 \cdot \frac{5}{12}$. Therefore, $f(v) \geq \frac{5}{12}$.

Now, suppose v shares a one-third vertex with a non-poor 1 -cluster, w, and a 3^{+}-cluster, C. By Discharging Rule 2a, each of v and w receives $\frac{1}{72}$ from C. And, by Discharging Rule 3d, each of v and w may need to send charge to distance-2 poor 1-clusters that do not receive charge by Rules 3a-3c; therefore, v and w send charge to a poor 1-cluster, u, only if u is neither distance- 2 from an open 3-cluster nor within distance-3 of a closed 3 -cluster or 4^{+}-cluster (Proposition 6.2). Then, each of v and w has at most one distance-2 poor 1-cluster that does not receive charge by Rules 3a-3c (Lemma 5.3). Therefore, $f(v)=f_{3}(v) \geq f_{2}(v)-\frac{1}{24}=\left(f_{1}(v)+\frac{1}{72}\right)-\frac{1}{24} \geq\left(\frac{4}{9}+\frac{1}{72}\right)-\frac{1}{24}=\frac{5}{12}$

Now, suppose v shares a one-third vertex with 3^{+}-clusters only. Then, by Rule $2 \mathrm{~b}, v$ receives $\frac{1}{18}$ from these 3^{+}-clusters. By Rule 3d, v may need to send charge to distance- 2 poor 1-clusters. However, v has at most 2 distance-2 poor 1-clusters (Lemma 5.4). Therefore, $f(v)=f_{3}(v) \geq f_{2}(v)-2 \cdot \frac{1}{24}=\left(f_{1}(v)+\frac{1}{18}\right)-\frac{1}{12} \geq$ $\left(\frac{4}{9}+\frac{1}{18}\right)-\frac{1}{12}=\frac{5}{12}$.
Claim 6.5. For every very poor 1 -cluster, $v, f(v) \geq \frac{5}{12}$.
Proof. Let $v \in D_{1}^{v p}$. We saw above that $f_{1}(v)=\frac{9}{24}$.
If v is in a symmetric orientation, then v is in a head position of 3 open 3 -clusters, C_{1}, C_{2} and C_{3} (Lemma 5.17). If any of C_{1}, C_{2} and C_{3} is crowded, say C_{1}, then v receives $\frac{1}{24}$ from C_{1}. Then, $f_{5}(v)=f_{1}(v)+\frac{1}{24}=\frac{5}{12}$. Let a, b and c be the vertices in D at distance- 2 from v. Since $v \in D_{1}^{v p}$, we must have $a, b, c \in D_{1}^{p}$. However, exactly one of a, b and c is in a shoulder position of each of C_{1}, C_{2} and C_{3} (Lemma 5.17); therefore $a, b, c \notin D_{1}^{v p}$. Then, Rules 6-7 do not require v to send any charge; therefore, $f(v) \geq f_{5}(v) \geq \frac{5}{12}$. Now, if each of C_{1}, C_{2} and C_{3} is uncrowded, then each of a, b and c is distance- 3 from a closed 3 -cluster or 4^{+}-cluster (Lemma 5.17). Discharging Rule 5 is not applicable, but, by Discharging Rule 6, each of a, b and c receives $\frac{1}{24}$ from a distance-3 closed 3-cluster or 4^{+}-cluster and sends $\frac{1}{24}$ to v. Rule 7 is not applicable; therefore $f(v)=f_{6}(v)=f_{1}(v)+3 \cdot \frac{1}{24}=\frac{9}{24}+\frac{1}{8}=\frac{1}{2}>\frac{5}{12}$.

Now, suppose v is in an asymmetric orientation. Let u, w and x be in the u-position, w-position and x-position, respectively. Now, $u, w \notin D_{1}^{v p}$ (Corollary 5.22); and if $x \in D_{1}^{v p}$, then v is in the x-position of x (Corollary 5.23). Therefore, none of the Discharging Rules requires v to send charge. Now, by Lemma 5.20, v and x are in the head positions of an open 3 -cluster, C_{0}, and one of the following holds:

- C_{0} is crowded. In this case, v receives $\frac{1}{24}$ from C_{0} by Rule 5 .
- There exists a closed 3 -cluster or 4^{+}-cluster at distance-3 from w. In this case, v receives $\frac{1}{24}$ from w by Rule 7a.
- There exists an open 3-cluster, C, such that the tail position of C is in D and u, v or w is in the hand position on the finless side of C. In this case, v receives $\frac{1}{24}$ from u, w or C by Rule 7 b .
- There exists a leaf, ℓ, of a 4^{+}-cluster, C, at distance- 2 from u such that u is not in a one-turn position or a backwards position of a linear 4-cluster or a curved 4-cluster, respectively, and u is the only vertex in $D \backslash C$ at distance- 2 from ℓ. In this case, v receives $\frac{1}{24}$ from u by Rule 7c.
- There exists a leaf, ℓ, of a closed 3 -cluster, C, at distance- 2 from u such that u is in a foot or arm position and u is the only vertex in $D \backslash C$ at distance- 2 from ℓ. Furthermore, either C is type- 2 paired or C has at most 6 nearby poor 1-clusters. In this case, v receives $\frac{1}{24}$ from u by Rule 7 c .
- There exists an open 3-cluster, C, such that v or w is in a hand position of C and the hand and arm positions on the other side of C are in D. In this case, v receives $\frac{1}{24}$ from C or w by Rule 7 d .
- There exists an open 3 -cluster, C, such that u is in a foot position and C is type- 1 paired on top. In this case, v receives $\frac{1}{24}$ from u by Rule 7 e .

Therefore, v receives at least $\frac{1}{24}$ from a nearby cluster by Discharging Rules 5 and 7 . Therefore, $f(v)=$ $f_{7}(v) \geq f_{1}(v)+\frac{1}{24}=\frac{9}{24}+\frac{1}{24}=\frac{5}{12}$.

Proposition 6.6. If an open 3 -cluster, C, is neither type-1 paired nor type-2 paired and $f_{2}(C) \geq \frac{34+P(C)}{24}$, then $f(C) \geq 3 \cdot \frac{5}{12}$.

Proof. Let C be an open 3-cluster that is neither type-1 nor type-2 paired. Note that Rule 3 b requires C to send at most $P(C) \cdot \frac{1}{24}$, Rule 5 requires C to send at most $\frac{2}{24}$ and Rules 7 b and 7 d each require C to send at most $\frac{1}{24}$ (Lemma 5.5); therefore, C sends at most $\frac{P(C)+4}{24}$ by Rules $3-7$. Therefore, if $f_{2}(C) \geq \frac{34+P(C)}{24}$, then $f(C) \geq \frac{30}{24}=3 \cdot \frac{5}{12}$.

Claim 6.7. For every open 3 -cluster, $C, f(C) \geq 3 \cdot \frac{5}{12}$.
Proof. Consider an open 3-cluster, C. Then, by Discharging Rule 1, the middle vertex of C must send $\frac{5}{12}$. Each of the leaf vertices has at least one distance-2 vertex in $D \backslash C$ (Proposition 3.6); therefore, each of the leaf vertices must send at most $\frac{5}{12 \cdot 2}+\frac{5}{12}=\frac{15}{24}$ by Rule 1. Thus, $f_{1}(C) \geq 3-\frac{5}{12}-2 \cdot \frac{15}{24}=\frac{4}{3}$.

First, suppose C is type-1 paired on top (see Figure 4.3 b). Now, the shoulder position of C is in D or the arm position is in D (Proposition 3.6). Suppose exactly one is in D, and let v be this vertex. Then, C has exactly 2 distance- 2 vertices in D; therefore, $f_{1}(C)=\frac{4}{3}$ and Rule 2 does not apply. By Rule $3 \mathrm{~b}, C$ does not send charge to v even if $v \in D_{1}^{p}$, but C may need to send charge to the poor 1-cluster, u, in the foot position. Therefore, $f_{3}(C) \geq f_{1}(C)-\frac{1}{24}=\frac{31}{24}$. Now, C is not type-2 paired (Corollary 4.10); therefore, Rule 4 does not apply. Since at least one of the shoulder positions of C is not in D, Rule 5 does not apply (Lemma 5.24). Since the tail position of a paired 3 -cluster is not in D, Rule 7 b does not apply. At least one of the hand positions of C is not in D; therefore, Rule 7 d does not apply. By Rule $7 \mathrm{e}, C$ may need to send $\frac{1}{24}$ to u; therefore, $f(C)=f_{7}(C) \geq f_{3}(C)-\frac{1}{24} \geq \frac{31}{24}-\frac{1}{24}=3 \cdot \frac{5}{12}$.

Now, suppose C is type-1 paired on top and both the shoulder position and the arm position of C are in D. Then, $f_{1}(C)=3-3 \cdot \frac{5}{12}-\frac{5}{12 \cdot 2}-\frac{5}{12 \cdot 3}=\frac{101}{72}$. Let v and w be the shoulder and arm positions of C, respectively. If v and w are 1-clusters, then C sends $\frac{1}{72}$ to both by Discharging Rule 2a. If exactly one of v and w is a 1 -cluster, say v, then C sends $\frac{1}{36}$ to v by Rule 2 b . In both cases, C sends a total of $\frac{1}{36}$; thus, $f_{2}(v) \geq f_{1}(v)-\frac{1}{36}=\frac{33}{24}$. By Rule $3 \mathrm{~b}, C$ may need to send $\frac{1}{24}$ to the poor 1-cluster, u, in the foot position; therefore, $f_{3} \geq \frac{32}{24}$. Again, Rules 4-7d do not apply. By Rule 7e, C may need to send $\frac{1}{24}$ to u; therefore, $f(C)=f_{7}(C) \geq f_{3}(C)-\frac{1}{24} \geq \frac{32}{24}-\frac{1}{24}=\frac{31}{24}>3 \cdot \frac{5}{12}$.

Suppose C is type-2 paired (see Figure 4.3c). One of the shoulder positions of C is in D. On the other side of C, the shoulder position is in D or the arm position is in D (Proposition 3.6). Let v and w be the shoulder and arm positions of C, respectively. Then, $w \in D_{1}^{n p}$ or $w \in D_{1}^{p}$ or $w \in D_{3+}$ or $w \notin D$. If $w \in D_{1}^{n p}$ and $v \notin D$, then $f_{1}(C)=\frac{32}{24}$. Now, C is not type-1 paired (Corollary 4.10); therefore, C may need to send charge to the shoulder position on the side opposite w by Rule 3 b . Then, $f_{3}(C) \geq \frac{31}{24}$. By Rule $4, C$ sends $\frac{1}{24}$ to the closed 3 -cluster with which C is type- 2 paired. Then, $f_{4}(C) \geq \frac{30}{24}$. Rule 5 does not apply (Lemma 5.24). And Rules 7b, 7c and 7e do not apply. Therefore, $f(C) \geq \frac{30}{24}=3 \cdot \frac{5}{12}$. If $w \in D_{1}^{n p}$ and $v \in D$, then $f_{1}(C)=\frac{101}{72}$. By Rule 2, C may need to send $\frac{1}{36}$ to distance-2 non-poor 1-clusters. Then, $f_{2}(C) \geq \frac{33}{24}$.

By Rule 3b, C sends at most $\frac{1}{24}$. By Rule 4, C sends $\frac{1}{24}$. Since $v \in D_{1}^{n p} \cup D_{3^{+}}$, at least one of the head positions of C is not a very poor 1 -cluster; therefore, C sends at most $\frac{1}{24}$ by Rule 5 . Rules $6-7$ do not apply. Therefore, $f(C) \geq \frac{30}{24}=3 \cdot \frac{5}{12}$. Now, if $w \in D_{1}^{p}$, then $v \notin D$ (Corollary 4.2) and $f_{1}(C)=\frac{32}{24}$. Then, C sends at most $\frac{1}{24}$ by Rule 3 b , and C sends $\frac{1}{24}$ by Rule 4 . Rules $5-7$ do not apply. Therefore, $f(C) \geq \frac{30}{24}=3 \cdot \frac{5}{12}$. If $w \in D_{3^{+}}$and $v \notin D$, then $f_{1}(C)=\frac{32}{24}$. By Rule $3 \mathrm{~b}, C$ sends at most $\frac{1}{24}$. If the hand position adjacent to w is in D, then C does not send charge by Rule 4 but C may need to send charge by Rule 7 d . If the hand position adjacent to w is not in D, then C must send charge by Rule 4 but not by Rule 7 d . Therefore, C sends charge by at most one of Rules 4 and 7 d . No other rules apply. Therefore, $f(C) \geq \frac{30}{24}=3 \cdot \frac{5}{12}$. If $w \in D_{3^{+}}$and $v \in D$, then $f_{1}(C)=\frac{101}{72}$. By Rule $2, C$ sends at most $\frac{1}{36}$ to v. Then, $f_{2}(C) \geq \frac{33}{24}$. By Rule 3b, C sends at most $\frac{1}{24}$. Therefore, $f_{3}(C) \geq \frac{32}{24}$. Now, $v \in D_{1}^{n p} \cup D_{3+}$ and v is distance- 2 from a head position of C; therefore, at most one of the head positions of C is a very poor 1 -cluster. Then, C sends at most $\frac{1}{24}$ by Rule 5 . Again, C sends charge by at most one of Rules 4 and 7 d . Therefore, $f(C) \geq \frac{30}{24}=3 \cdot \frac{5}{12}$. If $w \notin D$, then $v \in D$ (Proposition 3.6). Then, $f_{1}(C)=\frac{32}{24}$ and both shoulder positions of C are in D. If both are poor 1 -clusters, then C sends at most $\frac{2}{24}$ by Rule 3 b and sends no charge by other rules. Therefore, $f(C) \geq 3 \cdot \frac{5}{12}$. If one is not a poor 1-cluster, then at most one of the head positions of C is a very poor 1-cluster. Therefore, C sends at most $\frac{1}{24}$ by Rule 3 b and at most $\frac{1}{24}$ by Rule 5 , and C sends no charge by other rules. Therefore, $f(C) \geq \frac{30}{24}$. If neither is a poor 1 -cluster, then C does not send charge by any rule; therefore, $f(C)=\frac{32}{24}>3 \cdot \frac{5}{12}$.

Suppose C is neither type-1 paired nor type-2 paired and $P(C)=2$. Then, 4 and 7 e do not apply and $f_{1}(C)=\frac{32}{24}$. Since $P(C)=2$, there exists no one-third vertex adjacent to C; therefore, Rule 2 does not apply. Now, C may need to send charge by Rules $3 \mathrm{~b}, 5,7 \mathrm{~b}$, and 7 d . If C must send charge by Rule 5 , then both shoulder positions are in D (Lemma 5.24); therefore, the arm positions and the tail position of C are not in D and, hence, Rules 7 b and 7 d do not apply. If C must send charge by Rule 7 b , then the tail position of C is in D; therefore, the arm and shoulder positions of C are not in D and, hence, Rules 5 and 7d do not apply. If C must send charge by Rule 7 d , then an arm position of C is in D. Since each leaf must have at least one distance- 2 vertex in D (Proposition 3.6) and $P(C)=2$, the tail position of C is not in D and at least one of the shoulder positions is not in D; therefore, Rules 5 and 7 b do not apply. Thus, we have shown that C sends charge by at most one of Rules $5,7 \mathrm{~b}$ and 7 d . First, suppose C sends by none of Rules $5,7 \mathrm{~b}$ and 7 d . Then, C is uncrowded and the tail position of C is not in D; therefore, C has exactly 2 distance- 2 poor 1 -clusters. Then, C sends $\frac{2}{24}$ by Rule 3b and no charge by any other rule; therefore, $f(C)=\frac{30}{24}$. Suppose C sends charge by Rule 5. Then, both shoulder positions of C are in D (Lemma 5.24), and C is crowded; therefore, one of the shoulder positions is not a poor 1-cluster. But then one of the head positions of C is distance-2 from a non-poor 1-cluster or 3^{+}-cluster; therefore, there exists only one very poor 1-cluster in a head position of C. Then, C sends $\frac{1}{24}$ by 3 b and $\frac{1}{24}$ by Rule 5 ; therefore, $f(C)=\frac{30}{24}$. Now suppose C sends charge by Rule 7 b . Then, the tail position of C is in D. Since $P(C)=2$, the tail position is the only vertex in D at distance- 2 from C; therefore, there exists at most one distance- 2 poor 1-cluster. Then, $f_{3}(C) \geq \frac{31}{24}$ and Rule 7 b requires C to send at most $\frac{1}{24}$; therefore, $f(C) \geq \frac{30}{24}$. Finally, suppose C sends charge by Rule 7 d . Then, the hand and arm positions on one side of C are in D; therefore, at least one of the vertices in D at distance- 2 from C is not a poor 1-cluster. Then, $f_{3}(C) \geq \frac{31}{24}$ and, by Rule $7 \mathrm{~d}, C$ sends at most $\frac{1}{24}$; therefore, $f(C) \geq \frac{30}{24}$.

Suppose C is neither type-1 paired nor type-2 paired and $P(C)=3$. If C is adjacent to no one-third vertices, then $f_{1}(C)=3-3 \cdot \frac{5}{24}-2 \cdot \frac{5}{12}=\frac{37}{24}$; therefore, $f(C) \geq \frac{30}{24}$ (Proposition 6.6). If C is adjacent to a one-third vertex, then $f_{1}(C)=\frac{101}{72}$ and $f_{2}(C) \geq \frac{99}{72}=\frac{33}{24}$. Since C is adjacent to a one-third vertex and $P(C)=3$, there exists at most one distance-2 poor 1-cluster; therefore, $f_{3}(C) \geq \frac{32}{24}$. First, suppose the tail position of C is in D. Then, a foot position is also in D and no other distance- 2 vertices are in D; therefore, Rules 5 and 7 d do not apply. By Rule $7 \mathrm{~b}, C$ sends at most $\frac{1}{24}$; therefore, $f(C) \geq \frac{31}{24}$. Now, suppose the tail position of C is not in D; therefore, Rule 7 b does not apply. If C does not send charge by Rule 5 , then C sends at most by Rule 7 d and $f(C) \geq \frac{31}{24}$. If C sends charge by Rule 5 , then both shoulder positions of C are in D (Lemma 5.24). However, C is adjacent to a one-third vertex; therefore, one of the shoulder positions is not a poor 1-cluster. Then, at most one of the head positions is a very poor 1-cluster. Therefore, C sends at most $\frac{1}{24}$ by Rule 5 and at most $\frac{1}{24}$ by Rule 7 d . Therefore, $f(C) \geq \frac{30}{24}$.

Suppose C is neither type-1 paired nor type-2 paired and $P(C)=4$. First, suppose C is adjacent to no one-third vertices. Then, $f_{1}(C)=\frac{42}{24}$; therefore, $f(C) \geq \frac{30}{24}$ (Proposition 6.6). Now, suppose C is adjacent to exactly one one-third vertex. Then, $f_{1}(C)=\frac{116}{72}$. By Rule $2, C$ sends at most $\frac{1}{36}$; therefore,
$f_{2}(C)=\frac{114}{72}=\frac{38}{24}$. Therefore, $f(C) \geq \frac{30}{24}$ (Proposition 6.6). Now, suppose C is adjacent to exactly 2 one-third vertices. Then, $f_{1}(C)=\frac{53}{36}$. By Rule $2, C$ sends at most $2 \cdot \frac{1}{36}$; therefore, $f_{2}(C) \geq \frac{51}{36}=\frac{34}{24}$. Since C is adjacent to 2 one-third vertices and $P(C)=4$, there exist no distance-2 poor 1-clusters; therefore, $f_{3}(C) \geq f_{2}(C) \geq \frac{34}{24}$. In total, Rules 5-7 require C to send at most $\frac{4}{24}$; therefore, $f(C) \geq \frac{30}{24}$.

Suppose C is neither type-1 paired nor type-2 paired and $P(C) \geq 5$. Then, $f_{2}(C) \geq \frac{39}{24}$. Now, an open 3 -cluster has at most 4 distance- 2 poor 1 -clusters. Therefore, C sends at most $\frac{4}{24}$ by Rule 3 b. By Rules 5-7, C sends at most $\frac{4}{24}$. Therefore, $f(C) \geq \frac{31}{24}$.
Proposition 6.8. A closed 3 -cluster or 4^{+}-cluster sends charge to a distance-3 poor 1 -cluster by at most one of Rules 3c, 6 and 7a.

Proof. Let C_{1} be closed 3 -cluster or 4^{+}-cluster. If a poor 1-cluster, v, is distance- 2 from a very poor 1-cluster in a symmetric orientation, then v is distance- 2 from exactly one very poor 1-cluster. If v is in the u-position or w-position of a very poor 1 -cluster in an asymmetric orientation, then v is distance- 2 from exactly one very poor 1-cluster. Therefore, C_{1} sends charge to a poor 1-cluster by at most one of Rules 6 and 7 a . If C_{1} sends charge to a poor 1-cluster, a, by Rule 6 , then a is distance- 2 from a very poor 1 -cluster in a symmetric orientation and in a shoulder position of an open 3-cluster, C_{2} (Lemma 5.17). Now, C_{2} is not type- 1 paired on top (Corollary 5.18); therefore, a receives charge from C_{2} by Rule 3 b and not from C_{1} by Rule 3c. Therefore, C_{1} sends charge to a by at most one of Rules 3 c and 6 . If C_{1} sends charge to a poor 1-cluster, w, by Rule 7a, then w is in the w-position of a very poor 1 -cluster in an asymmetric orientation; therefore, w is in the shoulder position of an open 3-cluster, C_{0} (Lemma 5.20). Now, C_{0} is not type-1 paired on top (Corollary 5.21); therefore, w receives charge from C_{0} by Rule 3 b and not from C_{1} by Rule 3c. Therefore, C_{1} sends charge to w by at most one of Rules 3 c and 7 a .

Proposition 6.9. If C is a closed 3 -cluster and $f_{2}(C) \geq \frac{43}{24}$, then $f(C) \geq 3 \cdot \frac{5}{12}$.
Proof. By Rules 3c, 6 and 7a, C sends at most $\frac{1}{24}$ to each distance-3 poor 1-cluster (Proposition 6.8). By Rule 3a, C sends at most $\frac{1}{24}$ to each distance-2 poor 1-cluster. Now, C has at most 11 nearby poor 1-clusters (Lemma 5.16); therefore, by Rules $3-7 \mathrm{a}, C$ sends at most $\frac{11}{24}$. By Rule $7 \mathrm{c}, C$ sends at most $\frac{2}{24}$ to distance- 2 poor 1-clusters. Therefore, C sends at most $\frac{13}{24}$ by Rules 3-7.
Corollary 6.10. A closed 3 -cluster sends at most $\frac{11}{24}$ by Rules $3-7$ a and at most $\frac{2}{24}$ by Rule 7c.
Claim 6.11. For every closed 3 -cluster, $C, f(C) \geq 3 \cdot \frac{5}{12}$.
Proof. Consider a closed 3-cluster, C_{1}, and let $P\left(C_{1}\right)=3$. Then, $f_{1}\left(C_{1}\right)=\frac{37}{24}$. By Lemma 5.6, C_{1} has at most 8 nearby poor 1-clusters; however, if C_{1} has 8 such clusters, at least one of the poor 1-clusters at distance- $3, v$, is distance- 2 from another 3^{+}-cluster, C_{2}, such that
(a) if C_{2} is an open 3 -cluster, then v is not in a shoulder position;
(b) if C_{2} is an open 3-cluster and v is in an arm position, then C_{2} is not type-1 paired; if C_{2} is type-2 paired, then C_{1} is type- 2 paired with C_{2}.

Therefore, v receives charge from C_{2} by Rules $3 \mathrm{a}-3 \mathrm{~b}$ and not from C_{1} by Rule 3 c ; additionally, C_{1} does not send charge to v by Rules 6 and 7 a . Then, C_{1} sends at most $\frac{7}{24}$ by Rules 3,6 and 7 a (Proposition 6.8). If C_{1} sends charge by Rule 7 c , then C_{1} has at most 6 nearby poor 1 -clusters or C_{1} is type- 2 paired. A poor 1-cluster, u, receives charge by Rule 7 c only if u is the only vertex in $D \backslash C_{1}$ at distance- 2 from a leaf of C_{1} and u is not in a shoulder or tail position; therefore, C_{1} sends at most $\frac{2}{24}$ by Rule 7 c . If C_{1} sends $\frac{2}{24}$ by Rule 7 c , then the shoulder positions and the tail position of C_{1} are not in D; therefore, C_{1} has at most 5 nearby poor 1 -clusters (Lemma 5.6). Then, C sends at most $\frac{5}{24}$ by Rules 3,6 and 7 a (Proposition 6.8) and $\frac{2}{24}$ by Rule 7 c , and $f\left(C_{1}\right) \geq \frac{30}{24}$. If C_{1} sends $\frac{1}{24}$ by Rule 7 c and C_{1} has at most 6 nearby poor 1 -clusters, then C_{1} sends at most $\frac{6}{24}$ by Rules 3,6 and 7 a (Proposition 6.8) and $\frac{1}{24}$ by Rule 7 c , and $f\left(C_{1}\right) \geq \frac{30}{24}$. If C_{1} sends $\frac{1}{24}$ by Rule 7 c and C_{1} is type- 2 paired with the open 3 -cluster, C_{2}, then the argument is identical to the previous case unless C_{1} has 7 nearby poor 1-clusters. In this case, the arm position of C_{2} is in D and the hand position on the same side is not in D (Lemma 5.26); therefore, C_{1} receives $\frac{1}{24}$ from C_{2} by Rule 4 . Then, C_{1} sends at most $\frac{7}{24}$ by Rules 3,6 and 7 a (Proposition 6.8) and $\frac{1}{24}$ by Rule 7 c ; however, C_{1} receives $\frac{1}{24}$ by Rule 4 and, therefore, $f\left(C_{1}\right) \geq \frac{30}{24}$.

Consider a closed 3-cluster, C, and let $P(C)=4$. Then, either C is adjacent to no one-third vertices or C is adjacent to exactly one one-third vertex. In the former case, $f_{1}(C)=\frac{42}{24}$; and since C is not adjacent to any one-third vertices, $f_{2}(C)=\frac{42}{24}$. Now, C sends at most $\frac{11}{24}$ by Rules $3-7$ a and at most $\frac{2}{24}$ by Rule 7c (Corollary 6.10). Since C is adjacent to no one-third vertices, C is closed by a single vertex; therefore, since $P(C)=4$, one of the leaves of C is distance- 2 from 2 vertices in $D \backslash C$; therefore, C sends at most $\frac{1}{24}$ by Rule 7c. Therefore, $f(C) \geq \frac{30}{24}$. Now suppose C is adjacent to a one-third vertex. Then, $f_{2}(C) \geq \frac{38}{24}$. Now, C has at most 8 nearby poor 1 -clusters (Lemma 5.7); therefore, C sends at most $\frac{8}{24}$ by Rules $3-7$ a (Proposition 6.8). Therefore, if C sends no charge by Rule 7 c , then $f(C) \geq \frac{30}{24}$. If C sends $\frac{1}{24}$ by Rule 7 c , then an arm position or foot position of C is a poor 1-cluster. But then C has at most 7 nearby poor 1-clusters (Lemma 5.7) and $f_{7 a} \geq \frac{31}{24}$; therefore, $f(C) \geq \frac{30}{24}$. If C sends $\frac{2}{24}$ by Rule 7 c , then 2 arm or foot positions are poor 1-clusters. But then C has at most 6 nearby poor 1-clusters (Lemma 5.7) and $f_{7 a} \geq \frac{32}{24}$; therefore, $f(C) \geq \frac{30}{24}$.

Let $P(C)=5$. Then, either C is adjacent to no one-third vertices, one one-third vertex or 2 onethird vertices. In the first case, $f_{2}(C)=\frac{47}{24}$; therefore, $f(C) \geq \frac{30}{24}$ (Proposition 6.9). In the second case, $f_{2}(C) \geq \frac{43}{24}$; therefore, $f(C) \geq \frac{30}{24}$ (Proposition 6.9). In the last case, $f_{2}(C) \geq \frac{39}{24}$. Now, C has at most 11 nearby clusters (Lemma 5.16). Since C is adjacent to 2 one-third vertices, at least 3 of these clusters are not poor 1-clusters; additionally, at least one of the leaves of C is distance- 2 from more than one vertex in $D \backslash C$. Therefore, C sends at most $\frac{8}{24}$ by Rules 3 -7a (Proposition 6.8) and at most $\frac{1}{24}$ by Rule 7c; therefore, $f(C) \geq \frac{30}{24}$.

Let $P(C) \geq 6$. If $f_{2}(C) \geq \frac{43}{24}$, then $f(C) \geq \frac{30}{24}$ (Proposition 6.9). If $f_{2}(C)<\frac{43}{24}$, then C is adjacent to at least 3 one-third vertices. Therefore, at least 5 of the clusters nearby C are not poor 1 -clusters. Therefore, C has at most 6 nearby poor 1 -clusters (Lemma 5.16). Then, C sends at most $\frac{6}{24}$ by Rules $3-7$ a (Proposition 6.8). By Rule $7 \mathrm{c}, C$ sends at most $\frac{2}{24}$. Therefore, C sends at most $\frac{8}{24}$. But if $P(C) \geq 6$, then $f_{2}(C) \geq \frac{40}{24}$; therefore, $f(C) \geq \frac{32}{24}$.

Now we begin our discussion of 4^{+}-clusters. For $k \geq 4$, let C be a k-cluster, and let v be a vertex in C. Then, $d_{C}(v) \in\{1,2,3\}$. Let

$$
\alpha_{i}=\left|\left\{v \in C: d_{C}(v)=i\right\}\right|
$$

Now, C has at most $k+8$ nearby poor 1-clusters (Lemma 5.16); therefore, C sends at most $\frac{k+8}{24}$ by Rules 3 -7a (Proposition 6.8). By Rule 7c, C sends at most $\frac{1}{24}$ for each leaf of C. Now, the number of leaves of C is α_{1}; therefore, C sends at most $\frac{1}{24} \alpha_{1}$ by Rule 7 c. Rules 1 and 2 are the only others by which C may need to send charge; therefore, $f(C) \geq f_{2}(C)-\frac{1}{24}\left[(k+8)+\alpha_{1}\right]$. Now, $f_{2}(C)$ is minimal when $P(C)=2$; that is, $f_{2}(C) \geq k-\left(\frac{5}{12}+\frac{5}{24}\right) \alpha_{1}-\frac{5}{12} \alpha_{2}$. Let $F(C)=f(C)-\frac{5}{12} k$. Then,

$$
F(C) \geq\left[k-\left(\frac{5}{12}+\frac{5}{24}\right) \alpha_{1}-\frac{5}{12} \alpha_{2}\right]-\frac{1}{24}\left[(k+8)+\alpha_{1}\right]-\frac{5}{12} k
$$

Now, $k=\alpha_{1}+\alpha_{2}+\alpha_{3}$. Then, substituting and simplifying,

$$
F(C) \geq \frac{1}{24}\left(-3 \alpha_{1}+3 \alpha_{2}+13 \alpha_{3}-8\right)
$$

Now, $\Delta(C)=3$; therefore, $\alpha_{1} \leq \alpha_{3}+2$. Then,

$$
\begin{equation*}
F(C) \geq \frac{1}{24}\left[-3\left(\alpha_{3}+2\right)+3 \alpha_{2}+13 \alpha_{3}-8\right]=\frac{1}{24}\left(3 \alpha_{2}+10 \alpha_{3}-14\right) \tag{6.1}
\end{equation*}
$$

Now, $F(C)<0$ if, and only if, $f(C)<\frac{5}{12} k$. Let $A=\{(0,0),(1,0),(2,0),(3,0),(4,0),(0,1),(1,1)\}$. If $F(C)<0$, then $\left(\alpha_{2}, \alpha_{3}\right) \in A$. That is, for all $\left(\alpha_{2}, \alpha_{3}\right) \notin A$, Equation 6.1 implies $f(C) \geq \frac{5}{12} k$. Therefore, we have only left to consider the cases in which $\left(\alpha_{2}, \alpha_{3}\right) \in A$.

If $\left(\alpha_{2}, \alpha_{3}\right) \in\{(0,0),(1,0)\}$, then $C \in \mathcal{K}_{1} \cup \mathcal{K}_{3}$. But we assumed $C \in \mathcal{K}_{4^{+}}$; therefore, we need not consider this case. If $\left(\alpha_{2}, \alpha_{3}\right) \in\{(2,0),(0,1)\}$, then $C \in \mathcal{K}_{4}$; we consider this case in Claim 6.12. If $\left(\alpha_{2}, \alpha_{3}\right) \in\{(3,0),(1,1)\}$, then $C \in \mathcal{K}_{5}$; we consider this case in Claim 6.13. Finally, if $\left(\alpha_{2}, \alpha_{3}\right)=(4,0)$, then $C \in\left\{L \in \mathcal{K}_{6}: \Delta(L)=2\right\}$; we consider this case in Claim 6.14.
Claim 6.12. For every 4-cluster, $C, f(C) \geq 4 \cdot \frac{5}{12}$.

Proof. First, consider a linear 4-cluster, C, and let $P(C)=2$. Then, $f_{1}(C)=\frac{46}{24}$. Rule 2 does not apply; therefore, $f_{2}(C)=\frac{46}{24}$. First suppose C sends no charge by Rule 7 c . Then, C has at most 8 nearby poor 1-clusters; however, if C has k nearby poor 1-clusters, where $k>6$, then $k-6$ of the distance- 3 poor 1-clusters are stealable (Lemma 5.8) - that is, $k-6$ of the nearby poor 1-clusters will receive charge from other 3^{+}-clusters by Rules 3a-3b and not from C by Rules 3 c, 6 or 7 a. Therefore, C sends charge to at most 6 nearby poor 1 -clusters. Then, C sends at most $\frac{6}{24}$ (Proposition 6.8) and, therefore, $f(C) \geq \frac{40}{24}=4 \cdot \frac{5}{12}$. Now suppose C sends $\frac{1}{24}$ by Rule 7c. Then, one one-turn position is not in D; therefore, C has at most 6 nearby poor 1-clusters and if C has exactly 6 such clusters then at least one of the distance- 3 poor 1-clusters is stealable (Lemma 5.8) - that is, at least one of the distance-3 poor 1-clusters will receive charge by Rules $3 \mathrm{a}-3 \mathrm{~b}$ and not from C by Rules $3 \mathrm{c}, 6$ or 7 a. Therefore, C sends charge to at most 5 nearby poor 1 -clusters by Rules 3,6 and 7 a. Then, C sends at most $\frac{5}{24}$ by Rules 3,6 and 7 a (Proposition 6.8) and $\frac{1}{24}$ by Rule 7 c ; therefore, $f(C) \geq \frac{40}{24}$. Finally, suppose C sends $\frac{2}{24}$ by Rule 7c. Then, neither one-turn position is in D; therefore, C has at most 4 nearby poor 1-clusters. Then, C sends at most $\frac{4}{24}$ by Rules 3,6 and 7 a (Proposition 6.8) and $\frac{2}{24}$ by Rule 7 c ; therefore, $f(C) \geq \frac{40}{24}$.

Let $P(C)=3$. First, suppose C is adjacent to no one-third vertices. Then, $f_{2}(C)=\frac{51}{24}$. Now, C has at most 9 nearby poor 1 -clusters (Lemma 5.9); therefore, C sends at most $\frac{9}{24}$ by Rules 3-7a (Proposition 6.8). And C sends at most $\frac{2}{24}$ by Rule 7 c ; therefore, $f(C) \geq \frac{40}{24}$. Now, suppose C is adjacent to a one-third vertex, $v_{\frac{1}{3}}$. Then, $f_{2}(C) \geq \frac{47}{24}$. Now, C has at most 6 nearby poor 1 -clusters (Lemma 5.9); therefore, C sends at most $\frac{6}{24}$ by Rules 3-7a (Proposition 6.8). Since $P(C)=3$, one of the leaves of C must be adjacent to $v_{\frac{1}{3}}$; therefore, one of the leaves of C has more than one distance- 2 vertex in $D \backslash C$. Then, C sends at most $\frac{1}{24}$ by Rule 7 c; therefore, $f(C) \geq \frac{40}{24}$.

Now, consider a curved 4 -cluster, C, and let $P(C)=2$. Then, $f_{1}(C)=\frac{46}{24}$. Rule 2 does not apply; therefore, $f_{2}(C)=\frac{46}{24}$. First, suppose C sends no charge by Rule 7 c . Then, C has at most 8 nearby poor 1-clusters; however, if C has k such clusters, where $k>6$, then at least $k-6$ of the distance-3 poor 1-clusters are stealable (Lemma 5.10) - that is, C sends charge to at most 6 nearby poor 1 -clusters by Rules 3-7a. Then, C sends no charge by Rule 7 c and at most $\frac{6}{24}$ by Rules $3-7$ a (Proposition 6.8); therefore, $f(C) \geq \frac{40}{24}$. Now, suppose C sends $\frac{1}{24}$ by Rule 7c. Then, one backwards position of C is not in D; therefore, C has at most 6 nearby poor 1 -clusters, and if C has 6 such clusters then at least one is stealable (Lemma 5.10) - that is, C sends at most $\frac{5}{24}$ by Rules 3-7a (Proposition 6.8). Therefore, $f(C) \geq \frac{40}{24}$. Finally, suppose C sends $\frac{2}{24}$ by Rule 7c. Then, neither backwards position of C is in D; therefore, C has at most 2 nearby poor 1 -clusters (Lemma 5.10). Then, C sends at most $\frac{2}{24}$ by Rules $3-7$ a (Proposition 6.8); therefore, $f(C) \geq \frac{42}{24}$.

Let $P(C)=3$. First, suppose C is adjacent to no one-third vertices. Then, $f_{2}(C)=\frac{51}{24}$. Now, C has at most 11 nearby poor 1-clusters (Lemma 5.11); therefore, if C sends no charge by Rule 7 c , then $f(C) \geq \frac{40}{24}$ (Proposition 6.8). If C sends $\frac{1}{24}$ by Rule 7 c , then one backwards position of C is not in D; therefore, C has at most 10 nearby poor 1-clusters (Lemma 5.11). Then, C sends at most $\frac{10}{24}$ by Rules $3-7$ a (Proposition 6.8) and $\frac{1}{24}$ by Rule 7 c ; therefore, $f(C) \geq \frac{40}{24}$. If C sends $\frac{2}{24}$, then both backwards positions are not in D; therefore, C has at most 9 nearby poor 1 -clusters (Lemma 5.11). Then, C sends at most $\frac{9}{24}$ by Rules 3-7a (Proposition 6.8); therefore, $f(C) \geq \frac{40}{24}$. Now, suppose C is adjacent to a one-third vertex, $v_{\frac{1}{3}}$. Then, $f_{2}(C) \geq \frac{47}{24}$. Since $P(C)=3$ and each leaf of C has at least one distance-2 vertex in $D \backslash C$ (Proposition 3.6), $v_{\frac{1}{3}}$ is adjacent to one of the leaves of C; therefore, C sends at most $\frac{1}{24}$ by Rule 7 c . Now, C has at most 6 nearby poor 1 -clusters (Lemma 5.11). Therefore, C sends at most $\frac{6}{24}$ by Rules 3 - 7 a (Proposition 6.8) and at most $\frac{1}{24}$ by Rule 7 c ; therefore, $f(C) \geq \frac{40}{24}$.

Consider a linear or curved 4-cluster, C, and let $P(C) \geq 4$. First, suppose C is adjacent to no one-third vertices. Then, $f_{2}(C) \geq \frac{56}{24}$. Now, C has at most 12 nearby poor 1-clusters (Lemma 5.16); therefore, C sends at most $\frac{12}{24}$ by Rules $3-7$ a (Proposition 6.8). By Rule $7 \mathrm{c}, C$ sends at most $\frac{2}{24}$; therefore, $f(C) \geq \frac{42}{24}$. Now, suppose C is adjacent to exactly one one-third vertex. Then, $f_{2}(C) \geq \frac{52}{24}$. Now, C has at most 12 nearby clusters (Lemma 5.16). However, since C is adjacent to a one-third vertex, at least 2 of these clusters are not poor 1-clusters; therefore, C has at most 10 nearby poor 1 -clusters. Then, C sends at most $\frac{10}{24}$ by Rules $3-7$ a (Proposition 6.8) and at most $\frac{2}{24}$ by Rule 7c; therefore, $f(C) \geq \frac{40}{24}$. Finally, suppose C is adjacent to 2 one-third vertices. Now, if $P(C)=4$, then each leaf is adjacent to a one-third vertex and $f_{2}(C) \geq \frac{48}{24}$. Then, at least 4 of the 12 possible nearby clusters are not poor 1 -clusters; therefore, C sends at most $\frac{8}{24}$ by Rules 3-7a (Proposition 6.8). Since both leaves have more than one distance-2 vertex in $D \backslash C$, no charge is sent by Rule 7 c ; therefore, $f(C) \geq \frac{40}{24}$. If $P(C) \geq 5$ and C is adjacent to 3 one-third vertices, then $f_{2}(C) \geq \frac{49}{24}$
and at least 5 of the 12 possible nearby clusters are not poor 1 -clusters; therefore, C sends at most $\frac{7}{24}$ by Rules 3-7a (Proposition 6.8). By Rule 7c, C sends at most $\frac{2}{24}$; therefore, $f(C) \geq \frac{40}{24}$. If $P(C) \geq 5$ and C is adjacent to exactly 2 one-third vertices, then $f_{2}(C) \geq \frac{53}{24}$. Now, at least 3 of the 12 possible nearby clusters are not poor 1 -clusters; therefore, C sends at most $\frac{9}{24}$ by Rules 3 - 7 a (Proposition 6.8). By Rule $7 \mathrm{c}, C$ sends at most $\frac{2}{24}$; therefore, $f(C) \geq \frac{42}{24}$.

Consider a 4 -cluster, C, and let C have a degree- 3 vertex. First, suppose $P(C)=3$. Then, $f_{2}(C)=\frac{51}{24}$. Now, C has at most 8 nearby poor 1-clusters; therefore, C sends at most $\frac{8}{24}$ by Rules 3 - 7 a (Proposition 6.8). Since C has 3 leaves, C sends at most $\frac{3}{24}$ by Rule 7c. Therefore, $f(C) \geq \frac{40}{24}$. Now, suppose $P(C) \geq 4$. If C is adjacent to a one-third vertex, $v_{\frac{1}{3}}$, then $f_{2}(C) \geq \frac{52}{24}$ and at least 2 of the 12 possible nearby clusters (Lemma 5.16) are not poor 1-clusters; therefore, C sends at most $\frac{10}{24}$ by Rules 3 -7a (Proposition 6.8). From the structure of C, we see that $v_{\frac{1}{3}}$ must be adjacent to a leaf of C; therefore, at least one of the leaves of C has more than one distance- 2 vertex in $D \backslash C$. Therefore, C sends at most $\frac{2}{24}$ by Rule 7c. Therefore, $f(C) \geq \frac{40}{24}$. If C is adjacent to no one-third vertices, then $f_{2}(C) \geq \frac{56}{24}$. Now, C has at most 12 nearby poor 1 -clusters (Lemma 5.16), and C sends at most $\frac{3}{24}$ by Rule 7c; therefore, $f(C) \geq \frac{41}{24}$ (Proposition 6.8).
Claim 6.13. For every 5 -cluster, $C, f(C) \geq 5 \cdot \frac{5}{12}$.
Proof. Consider a 5 -cluster, C with $\Delta(C)=2$. If $C \in \mathcal{K}_{5}^{c}$, then $f_{2}(C) \geq \frac{65}{24}$. Now, C has at most 13 nearby poor 1-clusters (Lemma 5.16); therefore, C sends at most $\frac{13}{24}$ by Rules 3-7a (Proposition 6.8). Since C has exactly 2 leaves, C sends at most $\frac{2}{24}$ by Rule 7c. Therefore, $f(C) \geq \frac{50}{24}=5 \cdot \frac{5}{12}$. If $C \in \mathcal{K}_{5}^{o}$, then $f_{2}(C) \geq \frac{60}{24}$. Now, C has at most 9 nearby poor 1-clusters; furthermore, if C has exactly 9 such clusters, then at least one is stealable (Lemma 5.12) - that is, C sends at most $\frac{8}{24}$ by Rules $3-7$ a (Proposition 6.8). By Rule 7 c, C sends at most $\frac{2}{24}$. Therefore, $f(C) \geq \frac{50}{24}$.

Now, let C have a degree- 3 vertex. Then, $f_{2}(C) \geq \frac{65}{24}$. Now, C has at most 12 nearby poor 1 -clusters (Lemma 5.14); therefore, C sends at most $\frac{12}{24}$ by Rules $3-7$ a (Proposition 6.8). Since C has 3 leaves, C sends at most $\frac{3}{24}$ by Rule 7c. Therefore, $f(C) \geq \frac{50}{24}$.

Claim 6.14. For every 6-cluster, C, with $\Delta(C)=2, f(C) \geq 6 \cdot \frac{5}{12}$.
Proof. Consider a 6 -cluster, C with $\Delta(C)=2$. Then, C has exactly 2 leaves. If $C \in \mathcal{K}_{6}^{c}$, then $f_{2}(C) \geq \frac{79}{24}$. Now, C has at most 14 nearby poor 1-clusters; therefore, C sends at most $\frac{14}{24}$ by Rules 3 - 7 a (Proposition 6.8). By Rule $7 \mathrm{c}, C$ sends at most $\frac{2}{24}$. Therefore, $f(C) \geq \frac{63}{24}>6 \cdot \frac{5}{12}$. If $C \in \mathcal{K}_{6}^{o}$, then $f_{2}(C) \geq \frac{74}{24}$. Now, C has at most 10 nearby poor 1-clusters (Lemma 5.15); therefore, C sends at most $\frac{10}{24}$ by Rules 3-7a (Proposition 6.8). By Rule $7 \mathrm{c}, C$ sends at most $\frac{2}{24}$. Therefore, $f(C) \geq \frac{62}{24}>6 \cdot \frac{5}{12}$.

7 Deferred Proofs

Proof of Proposition 5.1. Let H be the group of non-poor 1-clusters described by b, d and e in Figure 7.1a. We choose $i \in D_{1}^{p}$. Then, i is distance-2 from e and not distance- 2 from the other 1-clusters in H. By symmetry, this is the general case. Since $i \in D_{1}^{p}$, we have $j, s \notin D$ and, by Corollary $4.2, h \notin D$. Therefore, $q \in D_{3^{+}}$(Proposition 3.4) and $g \in D$ (Proposition 3.5). Let C be the 3^{+}-cluster at q. If $r \in D$, then $r \in C$; therefore, i is distance-2 from a 3^{+}-cluster. If $r \notin D$, then $p \in C$. If $n \in D$, then $g, n, p, q \in C$ and C is a 4^{+}-cluster; therefore, i is distance- 3 from a 4^{+}-cluster. If $n \notin D$, then $v \in D$ and $p, q, v \in C$. Now, g closes C. Therefore, i is distance- 3 from a closed 3^{+}-cluster.

Proof of Lemma 5.2. Let H be the group of non-poor 1-clusters described by b, d and e in Figure 7.1a. Now, if a poor 1-cluster, w, is distance-2 from exactly one of b, d and e, then w is distance- 2 from an open 3-cluster or within distance-3 of a closed 3 -cluster or 4^{+}-cluster (Proposition 5.1). Thus, we need only consider poor 1 -clusters which are distance-2 from 2 of the 1 -clusters in H. There are 3 possibilities: a, c and h. Suppose by contradiction that each of a, c and h is a poor 1 -cluster that is not distance- 2 from an open 3 -cluster nor within distance- 3 of a closed 3 -cluster or 4^{+}-cluster. Since $h \in D_{1}^{p}$, we have $p \in D$ or $r \in D$ but not both (Corollary 4.2). By symmetry, we choose $r \in D$. Now, by hypothesis, h is not distance- 2 from any 3^{+}-cluster; therefore, $r \in D_{1}$ (Corollary 3.3). So we have $s \notin D$. Since $h \in D_{1}^{p}$ and $e \in D$, we also have $i \notin D$ (Corollary 4.2). Therefore, $j \in D_{3^{+}}$(Proposition 3.4). Also, since $i, s \notin D$ and $r \in D_{1}$, we have $t \in D$ (Proposition 3.5). Now, $e \in D$ and, by hypothesis, $c \in D_{1}^{p}$; therefore, $f \notin D$ (Corollary 4.2). Let C be the
3^{+}-cluster at j. Since $f, i \notin D$, we have $k \in C$. Now, if $u \in D$, then $j, k, t, u \in C$; therefore, c and h are distance- 3 from a 4^{+}-cluster, which is a contradiction. If $u \notin D$, then $m \in C$ and t closes C; therefore, c and h are distance- 3 from a closed 3^{+}-cluster, which is a contradiction.

(a) Proposition 5.1 and Lemma 5.2

(b) Lemma 5.3

(c) Lemma 5.4

Figure 7.1

Proof of Lemma 5.3. Let v be the one-third vertex shown in Figure 7.1b, and let c and d be 1-clusters. Then, by hypothesis, $a \in D \backslash D_{1}$; therefore, $a \in D_{3^{+}}$(Corollary 3.3). Suppose by contradiction that one of c and d has at least 2 distance-2 poor 1-clusters that are not distance-2 from an open 3-cluster nor within distance-3 of a closed 3 -cluster or 4^{+}-cluster. By symmetry, we consider d. Now, there are 4 candidates for distance- 2 poor 1-clusters: b, e, h and i. However, b is distance- 2 from the 3^{+}-cluster at a, so we need not consider b.

If $h \in D_{1}^{p}$, then $n \notin D$ and $i \notin D$ (Corollary 4.2). So we have $e \in D_{1}^{p}$; therefore, $f, j \notin D$ and $k \in D$ (Proposition 3.5). Since $i, j \notin D$, we have $q \in D_{3^{+}}$(Proposition 3.4). Let C be the 3^{+}-cluster at q. If $p \in D$, then $p \in C$ and h is distance- 2 from a 3^{+}-cluster, which is a contradiction. If $p \notin D$, then $r \in C$; therefore, either $k \in C$ and e is distance- 2 from a 4^{+}-cluster, or k closes C and both e and h are distance- 3 from a closed 3^{+}-cluster, which is a contradiction.

If $h \notin D_{1}^{p}$, then we have $e, i \in D_{1}^{p}$. Therefore, $f, j, q \notin D$ and, by Corollary $4.2, h \notin D$. Then $n \in D_{3^{+}}$ (Proposition 3.4) and $g \in D$ (Proposition 3.5). Let C be the 3^{+}-cluster at n. If $p \in D$, then $p \in C$ and i is distance- 2 from a 3^{+}-cluster, which is contradiction. If $p \notin D$, then $m \in C$. Then, either $g \in C$ and i is distance- 3 from a 4^{+}-cluster, or g closes C and i is distance- 3 from a closed 3^{+}-cluster, which is a contradiction.

Proof of Lemma 5.4. Let v be the one-third vertex shown in Figure 7.1c, and let d be a 1-cluster. Then, by hypothesis, $a, c \in D \backslash D_{1}$; therefore, $a, c \in D_{3^{+}}$(Corollary 3.3). Now, d has 6 distance- 2 vertices: a, b, c, e, f and g. However, $a, c \in D_{3^{+}}$. If $b \in D_{1}^{p}$, then $e \notin D$ (Corollary 4.2); and vice versa. If $f \in D_{1}^{p}$, then $g \notin D$ (Corollary 4.2); and vice versa. Therefore, at most 2 of b, e, f and g are poor 1-clusters.

Proof of Lemma 5.5. Let C be the 3-cluster shown in Figure 4.2a. Suppose by contradiction that C has 2 finless sides; then, $n, p \notin D$ (Definition 4.6). If $j \notin D$, then $p \in D_{3^{+}}$(Proposition 3.4). But none of the vertices adjacent to p is in D; therefore, $p \in D_{1}$, which is a contradiction. If $j \in D$ and $p \in D$, then $j, p \in D_{2}$, which is a contradiction (Proposition 3.2). If $j \in D$ and $p \notin D$, then $j \in D_{3^{+}}$(Proposition 3.4). But none of the vertices adjacent to j is in D; therefore, $j \in D_{1}$, which is a contradiction.

Proof of Lemma 5.6. Let C_{1} be the 3-cluster shown in Figure 7.2. If $C_{1} \in \mathcal{K}_{3}^{c}$, then the non-leaf vertex of C_{1} has at least one distance-2 vertex in $D \backslash C$ (Definition 4.3); by symmetry, we choose $f \in D$. Now, $P\left(C_{1}\right)=3$ and each leaf of C has at least one distance-2 vertex in $D \backslash C$ (Proposition 3.6); therefore, $e \notin D$ and

$$
|\{d, j, p, q\} \cap D|=|\{g, k, r, q\} \cap D|=1
$$

There are 11 candidates for nearby poor 1 -clusters: $a, c / d, f, h, i / j, k / m, n, p / t, q / v, r / x$ and s.
First we consider the cases for which $q \notin D$. To begin, we show that there are at most 9 nearby poor 1 -clusters. Now, $v \in D_{3^{+}}$(Proposition 3.4); therefore, there are at most 10 nearby poor 1-clusters. If $p \in D$,
then $n \notin D_{1}^{p}$ and there are at most 9 nearby poor 1-clusters. If $p \notin D$ and $t \notin D$, then there are at most 9 nearby poor 1 -clusters. If $r \in D$, then $s \notin D_{1}^{p}$ and there are at most 9 nearby poor 1-clusters. If $r \notin D$ and $x \notin D$, then there are at most 9 nearby poor 1 -clusters. So we consider $p, r \notin D$ and $t, x \in D$. Let C_{v} be the 3^{+}-cluster at v. At least one of u and w is in C_{v}; therefore, at least one of t and x is not a 1-cluster. Therefore, there are at most 9 nearby poor 1 -clusters.

Now we consider the cases for which at least one of d and g is in D. If $g \in D$, then $f, h \notin D_{1}^{p}$. Therefore, there are at most 7 nearby poor 1 -clusters. So now we consider $d \in D$ and $g \notin D$. Either $k \in D$ or $r \in D$ but not both. If $k \in D$, then $s \notin D_{1}^{p}$ and there are at most 8 nearby poor 1-clusters. Now, if $k \notin D_{1}^{p}$, then there are at most 7 nearby poor 1 -clusters. If $k \in D_{1}^{p}$, then $s \notin D$. Since $r \notin D$, we have $x \in D_{3^{+}}$ (Proposition 3.4). If $t \notin D_{1}^{p}$, then C_{1} has at most 7 nearby poor 1-clusters. If $t \in D_{1}^{p}$, then t is distance-2 from C_{v}. If $C_{v} \in \mathcal{K}_{3}^{o}$, then $v, w, x \in C_{v}$ and t is in an arm position. If C_{v} is paired, then it is type-2 paired with C_{1}. Therefore, the lemma holds with $k \in D$. If $r \in D$, then $s \notin D_{1}^{p}$ and there are at most 8 nearby poor 1-clusters. If $r \notin D_{1}^{p}$, then C_{1} has at most 7 nearby poor 1-clusters. If $r \in D_{1}^{p}$, then $s \notin D$. Since $k \notin D$, we have $m \in D_{3^{+}}$(Proposition 3.4); therefore, C_{1} has at most 7 nearby poor 1-clusters and the lemma holds.

Now we consider the cases for which neither shoulder position is in D. Since $d \notin D$, we have $a, c \in D_{3^{+}}$. Therefore, C_{1} has at most 7 nearby poor 1-clusters. Either $j \in D$ or $p \in D$; in both cases, $n \notin D_{1}^{p}$. Therefore, C_{1} has at most 6 nearby poor 1-clusters. Either $k \in D$ or $r \in D$; in both cases, $s \notin D_{1}^{p}$. Therefore, C_{1} has at most 5 nearby poor 1 -clusters and the lemma holds.

Now we consider the case for which $q \in D$. If $q \in D$, then $d, g, j, k, p, r \notin D$. Then, $a, c \in D_{3^{+}}$(Proposition 3.4). Therefore, C_{1} has at most 9 nearby poor 1 -clusters. If $q \notin D_{1}^{p}$, then C_{1} has at most 8 nearby poor 1-clusters. If $q \in D_{1}^{p}$, then either $u \in D$ or $w \in D$ (Proposition 3.5). If $u \in D$, then $t \notin D_{1}^{p}$ and there are at most 8 nearby poor 1-clusters; if $w \in D$, then $x \notin D_{1}^{p}$ and there are at most 8 nearby poor 1-clusters. Therefore, C_{1} has at most 8 nearby poor 1-clusters. Now, if $i \notin D_{1}^{p}$, then C_{1} has at most 7 nearby poor 1 -clusters. If $i \in D_{1}^{p}$, then i is distance- 2 from the 3^{+}-cluster at c, C_{c}; since $a \in D$, we have $C_{c} \notin \mathcal{K}_{3}^{o}$.

Figure 7.2: Lemma 5.6 and Lemma 5.7

Proof of Lemma 5.7. Let C be the closed 3-cluster shown in Figure 7.2. By symmetry, we choose $f \in D$. There are 5 possible one-third vertices adjacent to C, and there are 11 candidates for nearby poor 1-clusters: $a / e, c / d, f, h, i / j, k / m, n, p / t, q / v, r / x$ and s.

Suppose $e \in D$. Then, $a, e, f \notin D_{1}^{p}$; therefore, C has at most 9 nearby poor 1-clusters. Since $P(C)=4$, each leaf has exactly one distance- 2 vertex in $D \backslash C$. If $d, g \in D$, then $c, d, h \notin D_{1}^{p}$; therefore, C has at most 7 nearby poor 1-clusters. If $q \in D$, then either $q \in D_{1}^{p}$ or $q \notin D_{1}^{p}$. If $q \notin D_{1}^{p}$, then C has at most 8 nearby poor 1-clusters. If $q \in D_{1}^{p}$, then $p, r \notin D$ (Corollary 4.2). If $t \notin D_{1}^{p}$ or $x \notin D_{1}^{p}$, then C has at most 8 nearby poor 1-clusters. So assume $t, x \in D_{1}^{p}$. Since $q \in D_{1}^{p}$, we have $u \in D$ or $w \in D$ (Proposition 3.5); therefore, at least one of t and x is not a poor 1 -cluster. Therefore, C has at most 8 nearby poor 1-clusters. If $q \notin D$, then $v \in D_{3^{+}}$(Proposition 3.4); therefore, C has at most 8 nearby poor 1-clusters. If $j \in D$ or $p \in D$, then
$n \notin D_{1}^{p}$; and if $k \in D$ or $r \in D$, then $s \notin D_{1}^{p}$. Therefore, if one foot or arm position is a poor 1-cluster, then C has at most 7 nearby poor 1-clusters; and if 2 foot or arm positions are poor 1-clusters, then C has at most 6 nearby poor 1 -clusters.

Suppose $d, j \in D$. Then $c, d, i, j, n \notin D_{1}^{p}$. Therefore, C has at most 8 nearby poor 1 -clusters. If $k \in D$ or $r \in D$, then $s \notin D_{1}^{p}$; in this case, C has at most 7 nearby poor 1 -clusters.

The argument is nearly identical to the one above for the cases in which $g, k \in D, p, q \in D$ and $q, r \in D$.

Proof of Lemma 5.8. Let C_{1} be the linear open 4-cluster shown in Figure 7.3a. Both leaves of C_{1} must have at least one distance-2 vertex in D (Proposition 3.6), and, by hypothesis, $P\left(C_{1}\right)=2$; therefore, $f, g, r, s \notin D$ and

$$
|\{e, k, q\} \cap D|=|\{h, m, t\} \cap D|
$$

By Proposition 3.4, we have $b, w \in D_{3^{+}}$. Let C_{b} and C_{w} be the 3^{+}-clusters at b and w, respectively. There are 10 candidates for nearby poor 1-clusters: $a, c / h, d / e, i, j / k, m / n, p, q / v, t / u$ and x. Now, at least one of a and c is adjacent to or in C_{b}; therefore, at least one of a and c is not a poor 1-cluster. A similar argument may be made for v and x. Therefore, there are at most 8 nearby poor 1 -clusters.

If both one-turn positions are in D, then we have $e, t \in D$. If C_{1} has 8 nearby poor 1-clusters, then at most one of a and c is not a poor 1 -cluster. If $a \notin D_{1}^{p}$, then c is distance- 2 from C_{b}. If $C_{b} \in \mathcal{K}_{3}$, then c is either in a foot position or arm position. If c is in an arm position, then $a \in C_{b}$ and C_{b} is not paired. If $c \notin D_{1}^{p}$, then a similar argument may be made for a. And a symmetric argument may be made for v and x and C_{w}. Therefore, at least 2 of the poor 1 -clusters at distance- 3 are stealable. If C_{1} has exactly 7 nearby poor 1-clusters, then at least one of a, c, v and x is a poor 1 -cluster. Then, the above argument suffices; therefore, at least one of the distance-3 poor 1-clusters is stealable.

If exactly one one-turn position is in D, then $e \notin D$ or $t \notin D$. By symmetry we choose $e \notin D$. Then, $d \in D_{3^{+}}$(Proposition 3.4). Therefore, there are at most 7 nearby poor 1-clusters. By hypothesis, at least one of k and q is in D. In both cases, $p \notin D_{1}^{p}$. Therefore, there are at most 6 nearby poor 1-clusters. Now, $a \in D_{3^{+}}$(Proposition 3.4). Thus, if C_{1} has exactly 6 nearby poor 1-clusters, then $c \in D_{1}^{p}$. Then c is distance-2 from C_{b} and $a \in C_{b}$. If $C_{b} \in \mathcal{K}_{3}$, then c is in an arm position and C_{b} is not paired. Therefore, c is stealable.

If neither one-turn position is in D, then $e, t \notin D$. Therefore, $a, d, u, x \in D_{3^{+}}$(Proposition 3.4). Therefore, C_{1} has at most 6 nearby poor 1-clusters. By hypothesis, at least one of k and q and at least one of h and m is in D. If $k \in D$ or $q \in D$, then $p \notin D_{1}^{p}$; and if $h \in D$ or $m \in D$, then $i \notin D_{1}^{p}$. Therefore, C_{1} has at most 4 nearby poor 1-clusters.

Proof of Lemma 5.9. Let C be the linear 4-cluster shown in Figure 7.3a. First, suppose C is adjacent to no one-third vertices. Now, either $g \in D$ or $g \notin D$. If $g \in D$, then one of the leaves of C and one of the middle vertices has a distance-2 vertex in $D \backslash C$. Now, each leaf has at least one distance-2 vertex in $D \backslash C$ (Propostion 3.6) and, by hypothesis, $P(C)=3$; therefore, $f, h, m, r, s, t \notin D$ and $|\{e, k, q\} \cap D|=1$. Then, $u, w, x \in D_{3^{+}}$(Proposition 3.4) and there are at most 9 nearby poor 1-clusters: $a, c, d / e, g, i, j / k$, n, p and q / v. Now, suppose $g \notin D$. If $r \in D$, then this case can be reduced, by symmetry, to the above case. So assume $r \notin D$. Then, $b, w \in D_{3^{+}}$(Propostion 3.4). There are 10 candidates for nearby poor 1-clusters: $a / f, c / h, d / e, i, j / k, m / n, p, q / v, s / x$ and t / u. Suppose by contradiction that there exist 10 nearby poor 1 -clusters. Then, $i, p \in D_{1}^{p}$. Therefore, $h, m \notin D$ and $n, v \in D$ (Proposition 3.5). And we must have $n, v \in D_{1}^{p}$; otherwise, C has fewer than 10 nearby poor 1-clusters. Since $g, h, m \notin D$, we have $t \in D$ (Proposition 3.6). And, as above, we must have $t \in D_{1}^{p}$; therefore, $x \in D$ (Proposition 3.5). And, again, we must have $x \in D_{1}^{p}$. Therefore, $v, x \in D_{1}^{p}$. But $w \in D_{3^{+}}$and $r \notin D$; therefore, at least one of v and x is not a poor 1-cluster, which is a contradiction.

Now, suppose C is adjacent to a one-third vertex, $v_{\frac{1}{3}}$. Since $P(C)=3$ and each leaf must have at least one distance-2 vertex in $D \backslash C$ (Proposition 3.6), $v_{\frac{1}{3}}$ must be adjacent to e and k or m and t. By symmetry, we choose $e, k \in D$. Then, $|\{h, m, t\} \cap D|=1$ and $f, g, q, r, s \notin D$; therefore, $b, w \in D_{3^{+}}$(Proposition 3.4) and there are at most 7 nearby poor 1-clusters: $a, c / h, m / n, p, t / u, v$ and x. Suppose by contradiction that C has 7 nearby poor 1-clusters. Then, $v, x \in D_{1}^{p}$. But $w \in D_{3^{+}}$and $r \notin D$; therefore, at least one of v and x is not a poor 1-cluster, which is a contradiction.

(a) Lemma 5.8 and Lemma 5.9

(b) Lemma 5.10 and Lemma 5.11

Figure 7.3

Proof of Lemma 5.10. Let C_{1} be the curved open 4-cluster shown in Figure 7.3b. Both leaves of C_{1} must have at least one distance-2 vertex in D (Proposition 3.6), and, by hypothesis, $P\left(C_{1}\right)=2$; therefore, $f, j, p, u \notin D$ and

$$
|\{d, e, i\} \cap D|=|\{n, s, t\} \cap D|=1
$$

By symmetry, there are only 6 cases to consider: $e, t \in D ; e, s \in D ; e, n \in D ; d, s \in D ; d, n \in D$; and $i, n \in D$. Note that $k, q \in D_{3^{+}}$in every case (Proposition 3.4). First, we consider the cases with backwards positions.
$e, t \in D$: There are 9 candidates for nearby poor 1-clusters: a, c, e, g, h, r, s, v and w. We could have chosen m instead of h, but the proof would be symmetric so we consider only h as a candidate. Now, at most one of h and r is a poor 1 -cluster; therefore, C_{1} has at most 8 nearby poor 1-clusters. When C_{1} has exactly 8 such 1-clusters, all of the candidates other than h and r are poor 1-clusters. Therefore, $g, v \in D_{1}^{p}$ and q and k are in the same 4^{+}-cluster, C_{2}. Then we have g and v at distance- 2 from C_{2}, where C_{2} is not an open 3 -cluster. When C_{1} has exactly 7 nearby poor 1-clusters, at most one of g and v is no longer a poor 1 -cluster. Therefore, at least one of g and v is distance- 2 from a 3^{+}-cluster. If $g \in D_{1}^{p}$, then $k \in D_{3^{+}} \backslash D_{3}^{o}$ and g is distance- 2 from k; a symmetric argument can be made for v and q. Therefore, at least one of g and v is distance-2 from a 3^{+}-cluster, C_{2}, where C_{2} is not an open 3-cluster.
$e, s \in D$: Since $t \notin D$, we have $k, q, v, x \in D_{3^{+}}$. There are 6 candidates for nearby poor 1-clusters: a, c, e, g, s and h / m. However, h and s cannot both be poor 1 -clusters; and m and c cannot both be poor 1 -clusters. Therefore, there are at most 5 nearby poor 1-clusters.
$e, n \in D:$ Again, $k, q, v, x \in D_{3^{+}}$. There are 7 candidates for nearby poor 1-clusters: a, c, e, g, h, n and w. However, at most one of n and w is a poor 1-cluster. Therefore, there are at most 6 nearby poor 1-clusters. If C_{1} has exactly 6 such 1 -clusters, then $g \in D_{1}^{p}$. Then, g is distance- 2 from the 3^{+}-cluster at k, C_{k}, and C_{k} is not an open 3-cluster.
$d, s \in D$: Since $e, t \notin D$, we have $b, g, k, q, v, x \in D_{3^{+}}$. There are 3 candidates for nearby poor 1-clusters: d, h and s. We could have chosen m instead of h but the proof would be symmetric. It cannot be the case that both h and s are poor 1-clusters. Therefore, there are at most 2 nearby poor 1 -clusters.
$d, n \in D$: Again, $b, g, k, q, v, x \in D_{3^{+}}$. There are 4 candidates for nearby poor 1-clusters: d, h, n and w. However, at most one of d and h is a poor 1 -cluster; likewise for n and w. Therefore, there are at most 2 nearby poor 1-clusters.
$i, n \in D:$ Once again, $b, g, k, q, v, x \in D_{3^{+}}$. There are 4 candidates for nearby poor 1-clusters: a, i, n and w. However, at most one of a and i is a poor 1 -cluster; likewise for n and w. Therefore, there are at most 2 nearby poor 1-clusters.

Proof of Lemma 5.11. Let C be the curved 4-cluster shown in Figure 7.3b. First, suppose C is adjacent to no one-third vertices and both backwards positions are in D; that is, $e, t \in D$. Then, either $j \in D$ or $j \notin D$.

Now, $P(C)=3$; therefore, if $j \in D$ then $d, f, i, n, p, s, u \notin D$. Therefore, C has at most 11 nearby poor 1-clusters: $a, b, c, e, g, h / m, j, q, r, t$ and v. Now, consider the case in which $j \notin D$. If $p \in D$, then this case can be reduced by symmetry to the previous case. So we assume $p \notin D$. Then, $k, q \in D_{3^{+}}$(Proposition 3.4), and C has at most 10 nearby poor 1-clusters: $a / d, c, e, g, h / i, m / n, r, s / w, t$ and u / v.

Now, suppose C is adjacent to no one-third vertices and one backwards position is not in D. By symmetry, we choose $e \notin D$. Again, either $j \in D$ or $j \notin D$. First, assume $j \in D$. Since $P(C)=3$ and each leaf has at least one distance-2 vertex in $D \backslash C$ (Proposition 3.6), we must have $f \notin D$; then, $b, g \in D_{3^{+}}$(Proposition 3.4), and C has at most 10 nearby poor 1-clusters: $a / d, c, h / i, j, m / n, p / q, r, s / w, t / x$ and u / v. Now, assume $j \notin D$. If $p \in D$, then this case can be reduced by symmetry to the previous case. So we assume $p \notin D$; then, $k, q \in D_{3^{+}}$(Proposition 3.4), and C has at most 10 nearby poor 1-clusters: $a / d, b, c, f / g, h / i$, $m / n, r, s / w, t / x$ and u / v.

Now, suppose C is adjacent to no one-third vertices and both backwards positions are not in D; that is, $e, t \notin D$. First, assume $j \in D$. Since $P(C)=3$ and each leaf has at least one distance- 2 vertex in $D \backslash C$ (Proposition 3.6), we must have $f, p, u \notin D$; then, $b, g, v, x \in D_{3^{+}}$(Proposition 3.4), and C has at most 8 nearby poor 1 -clusters: $a / d, c, h / i, j, m / n, q, r$ and s / w. Now, assume $j \notin D$. If $p \in D$, then this case can be reduced by symmetry to the previous case. So we assume $p \notin D$. Then, $k, q \in D_{3^{+}}$(Proposition 3.4). There are 10 candidates for nearby poor 1 -clusters: $a / d, b, c, f / g, h / i, m / n, r, s / w, u / v$ and x. Each leaf of C has at least one distance- 2 vertex in $D \backslash C$ (Proposition 3.6). Therefore, $d \in D$ or $i \in D$; in both cases, $c \notin D_{1}^{p}$. Therefore, C has at most 9 nearby poor 1-clusters.

Finally, suppose C is adjacent to a one-third vertex, $v_{\frac{1}{3}}$. Since $P(C)=3$ and each leaf must have at least one distance-2 vertex in $D \backslash C$ (Proposition 3.6), $v_{\frac{1}{3}}$ must be adjacent to a leaf of C. By symmetry, we choose $d, e \in D$. Then, for the same reasons, we must have $f, i, j, p, u \notin D$. Then, $k, q \in D_{3^{+}}$(Proposition 3.4), and C has at most 6 nearby poor 1-clusters: $g, h / m, n / r, s / w, t / x$ and v.

(a) Case 1

(b) Case 2

(c) Case 3

Figure 7.4: Lemma 5.12

Proof of Lemma 5.12. By symmetry, there are only 3 cases to consider.
Let C_{1} be the open 5 -cluster shown in Figure 7.4a. By Proposition 3.4, we have $c, u, v \in D_{3^{+}}$. Then the candidates for nearby poor 1 -clusters are $a, e, f / g, h / i, j / k, m / n, p / q, r / s, t$ and w. There are 10 candidates in total. However, $c \in D_{3^{+}}$. Let C_{c} be the 3^{+}-cluster at c. Now, $b \in C_{c}$ or $d \in C_{c}$ or both. If both, then $a, e \notin D_{1}^{p}$ and there are at most 8 nearby poor 1 -clusters. So consider the case in which only one of b and d is in D. By symmetry, we choose $d \in D$; therefore, $e \notin D_{1}^{p}$ and there are at most 9 nearby poor 1-clusters. However, a is distance-2 from C_{c}. Now, if $e \notin D$, then $h, i \in D_{3^{+}}$(Proposition 3.4) and there are at most 8 nearby poor 1-clusters. Therefore, if $C_{c} \in \mathcal{K}_{3}^{o}$ and C_{1} has 9 nearby poor 1-clusters, then $c, d, e \in C_{c}$. Then, a is not in a shoulder position and C_{c} is not paired.

Let C_{2} be the open 5 -cluster shown in Figure 7.4b. By Proposition 3.4, we have $r, t, u \in D_{3^{+}}$. There are 9 candidates for nearby poor 1-clusters: $a / b, c / d, e / f, g / h, i / j, k / m, n, p / q$ and s. However, s is distance- 2 from the 3^{+}-cluster at t; let C_{t} be this 3^{+}-cluster. If $C_{t} \in \mathcal{K}_{3}^{o}$, then $u \in C_{t}$; furthermore, s is in an arm position but C_{t} is not paired.

Let C_{3} be the open 5 -cluster shown in Figure 7.4c. By Proposition 3.4, we have $g, j, n, q \in D_{3^{+}}$. There are 7 candidates for nearby poor 1-clusters: $a / b, c, d, e / f, h / i, k / m$ and p.

Proof of Lemma 5.13. Let C be the 4-cluster shown in Figure 7.5a. Then C has one degree- 3 vertex. Each of the 3 leaves of C has at least one distance-2 vertex in $D \backslash C$ (Proposition 3.6) and, by hypothesis, $P(C)=3$; therefore

$$
|\{e, f, j, p\} \cap D|=|\{f, g, k, q\} \cap D|=|\{p, q, t, v\} \cap D|=1
$$

By symmetry, we must consider only 2 cases: $f \in D$ and $g \in D$. There are 12 candidates for nearby poor 1-clusters: $a / e, b / f, c / g, d, h, i / j, k / m, n / p, q / r, s / t, u$ and v / w.

Now, if $f \in D$, then $e, g, j, k, p, q \notin D$. Therefore, $n, r \in D_{3^{+}}$(Proposition 3.4). Thus, C has at most 10 nearby poor 1 -clusters. Then, either $t \in D$ or $v \in D$; in both cases, $u \notin D_{1}^{p}$. Therefore, C has at most 9 nearby poor 1 -clusters. By symmetry, we choose $v \in D$ and $t \notin D$. If $v \notin D_{1}^{p}$, then the lemma holds; so we assume $v \in D_{1}^{p}$. Then, $u \notin D$. But we also have $t \notin D$; therefore, $s \in D_{3^{+}}$(Proposition 3.4). Therefore, C has at most 8 nearby poor 1-clusters.

If $g \in D$, then $f, k, q \notin D$. Therefore, $b, r \in D_{3^{+}}$and $h \notin D_{1}^{p}$. Therefore, C has at most 9 nearby poor 1 -clusters. If $g \notin D_{1}^{p}$, then the lemma holds; so we assume $g \in D_{1}^{p}$. Then, $h \notin D$. But we also have $k \notin D$; therefore, $m \in D_{3^{+}}$(Proposition 3.4). Therefore, C has at most 8 nearby poor 1-clusters.

(a) Lemma 5.13

(b) Lemma 5.14

Figure 7.5

Proof of Lemma 5.14. Let C be the 5 -cluster shown in Figure 7.5b. Then C has one degree- 3 vertex. There are 13 candidates for nearby poor 1-clusters: $a / h, b / c, d, e / f, g, i / j, k / m, n / p, q / r, s / t, u / v, w$ and x / y.

Now, if $c \in D$, then $d \notin D_{1}^{p}$. Therefore, C has at most 12 nearby poor 1-clusters.
Now we consider the case for which $c \notin D$. If $b \notin D_{1}^{p}$, then C has at most 12 nearby poor 1-clusters and the lemma holds. So we assume $b \in D_{1}^{p}$. Then we have $a \notin D_{1}^{p}$. If $h \notin D_{1}^{p}$, then C has at most 12 nearby poor 1-clusters and the lemma holds. So we assume $h \in D_{1}^{p}$. Then $g \notin D_{1}^{p}$; therefore, C has at most 12 nearby poor 1-clusters.

Proof of Lemma 5.15. By symmetry there are only 4 cases to consider. Let C_{1} be the open 6 -cluster shown in Figure 7.6a. Then, $b, c, t, u \in D_{3^{+}}$(Proposition 3.4). There are 10 candidates for nearby poor 1-clusters: $a, d / g, e / f, h, i / j, k / m, n, p / s, q / r$ and v. Therefore, C_{1} has at most 10 nearby poor 1-clusters. Let C_{2} be the open 6 -cluster shown in Figure 7.6b. Then, $b, c, f, q \in D_{3^{+}}$. Therefore, C_{2} has at most 9 nearby poor 1-clusters: $a, d / e, g / h, i, j / k, m / n, p, r / s$ and t / u. Let C_{3} be the open 6 -cluster shown in Figure 7.6c. Then, $b, e, p, s \in D_{3+}$. Therefore, C_{3} has at most 8 nearby poor 1-clusters: $a, c / d, f / g, h / i, j / k, m / n, q / r$ and t. Let C_{4} be the open 6 -cluster shown in Figure 7.6d. Then, $p, s, u, v \in D_{3^{+}}$. Therefore, C_{4} has at most 9 nearby poor 1-clusters: $a / e, b / f, c / d, g, h / i, j / k, m / n, q / r$ and t.

(a) Case 1

(b) Case 2

(d) Case 4

Figure 7.6: Lemma 5.15

Proof of Lemma 5.17. Let v, a, b and c be as shown in Figure 7.7a. Now, $v \in D_{1}^{v p}$ and a, b and c are distance2 from v; therefore, $a, b, c \in D_{1}^{p}$. Therefore, $g, n, p \notin D$ and $d, m, q \in D$ (Proposition 3.5). Then $h, k, s \in D_{3^{+}}$ (Proposition 3.4). Let C_{h} be the 3^{+}-cluster at h. Now, C_{h} is distance-3 from v; therefore, $C_{h} \in \mathcal{K}_{3}^{o}$. Since $b, d \in D$, we must have $e, h, i \in C_{h}$. Symmetric arguments may be made to show $f, j, k \in D_{3+}^{o}$ and $r, s, t \in D_{3^{+}}^{o}$. Therefore, v is in a head position of 3 open 3 -clusters and exactly one of a, b and c is in a shoulder position of each of these open 3-clusters.

(a)

(b)

Figure 7.7: Lemma 5.17
Now suppose each of the open 3 -clusters at distance- 3 from v is uncrowded as in Figure 7.7b. All of the vertices have been relabelled except v, a, b and c. Now, the graph is rotationally symmetric about v, so we need only consider one of a, b and c. We choose c. Now, d is in a shoulder position of an open 3 -cluster, C, which is distance-3 from v. By hypothesis, C is uncrowded; thus, $d \in D_{1}^{p}$. Therefore, $f \notin D$ and $e \in D$ (Proposition 3.5). Then we have $i \in D_{3^{+}}$. Let C_{i} be the 3^{+}-cluster at i. Since 2 of the 3 neighbors of i are not in D, we also have $h \in C_{i}$. If $g \in D$, then $e, g, h, i \in C_{i}$. If $g \notin D$, then $h, i, j \in C_{i}$ and e closes C_{i}. In both cases, C_{i} is a closed 3-cluster or 4^{+}-cluster at distance-3 from c.

Proof of Lemma 5.20. Let u, v, w and x be as shown in Figure 7.8a. Now, by hypothesis, $v \in D_{1}^{v p}$; therefore, $u, w, x \in D_{1}^{p}$. Then, we have $f \notin D$; therefore, $n \in D_{3+}$. Since $x \in D_{1}^{p}$, we have $g \in D$ (Proposition 3.5). Let C_{0} be the 3^{+}-cluster at n. Now, v is distance- 3 from C, so $C \in \mathcal{K}_{3}^{o}$. The only possibility is to have $m, n, p \in C$. Therefore, v and x are in the head positions of an open 3-cluster, and w is in a shoulder position.

If C_{0} is crowded, then (i) is satisfied and the lemma holds. So assume C_{0} is uncrowded. Then, $j, k, s \notin D$, and since $u \in D_{1}^{p}$ we have $e \notin D$ (Corollary 4.2). If $i \notin D$, then $h, r \in D_{3^{+}}$. Let C_{r} be the 3^{+}-cluster at r.

(a) Lemma 5.20

(b) Lemma 5.20, where (i) and (ii) are not satisfied.

Figure 7.8: Lemma 5.20

If $h \in C_{r}$, then w is distance-3 from a 4^{+}-cluster. If $h \notin C_{r}$, then h closes C_{r} and w is distance- 3 from a closed 3^{+}-cluster. In both cases, (ii) is satisfied. So assume w is not distance- 3 from a closed 3 -cluster or 4^{+}-cluster. Then, we have $i \in D$. Now, if $r \notin D$, then $i, q \in D_{3^{+}}$. Let C_{i} be the 3^{+}-cluster at i. If $q \in C_{i}$, then w is distance-3 from a 4^{+}-cluster; and if $q \notin C_{i}$, then q closes C_{i} and w is distance- 3 from a closed 3^{+}-cluster. But we assumed that (ii) is not satisfied; therefore, $r \in D$.

If $c \notin D$, then $a, b, d \in D_{3^{+}}$. Let C_{b} be the 3^{+}-cluster at b. If b is a leaf of C_{b}, then either $u \in C_{b}$ and $C_{b} \in \mathcal{K}_{4^{+}}$, or u closes C_{b} and $C_{b} \in \mathcal{K}_{3^{+}}^{c}$, or $a \in C_{b}$ and $C_{b} \in \mathcal{K}_{4^{+}}$, or a closes C_{b} and $C_{b} \in \mathcal{K}_{3^{+}}^{c}$. But v is very poor and distance- 3 from b, so we must have $C_{b} \in \mathcal{K}_{3}^{o}$. This is only possible if b is the middle vertex of C_{b}. Let C_{a} be the 3^{+}-cluster at a, and let C_{d} be the 3^{+}-cluster at d. Now, $C_{b} \in \mathcal{K}_{3}^{o}$, so a is a leaf of C_{a} and either $d \in C_{a}$ or d closes C_{a}. In the first case, v is distance- 3 from a 4^{+}-cluster . But, by hypothesis, v is not distance-3 from a 4^{+}-cluster. Therefore, d closes C_{a}. But then d is a leaf of C_{d} and x closes C_{d}; therefore, v is distance- 3 from a closed 3^{+}-cluster. But, by hypothesis, v is not distance- 3 from a closed 3^{+}-cluster. Therefore, $c \in D$.

Figure 7.8 b shows the surrounding vertices of v when neither (i) nor (ii) is satisfied. All the vertices except u, v, w and x have been relabelled. Now, $u \in D_{1}^{p}$; therefore, exactly one of g and m is in D (Corollary 4.2).

First, we consider the case for which $m \in D$ and $g \notin D$. If $p \in D$, then $m, p \in D_{3^{+}}$. Let $C_{m, p}$ be the 3^{+} cluster at m and p. If $k, m, p \in C_{m, p}$, then u closes $C_{m, p}$. But p is distance- 3 from w and, by assumption, w is not distance- 3 from a closed 3^{+}-cluster. If $m, n, p \in C_{m, p}$, then s closes $C_{m, p}$. But, again, by assumption, w is not distance- 3 from a closed 3^{+}-cluster. Therefore, $p \notin D$. Then, by Proposition 3.4, we have $s \in D_{3^{+}}$. Let C_{s} be the 3^{+}-cluster at s. Since 2 of the 3 neighbors of s are not in D, we have $r \in C_{s}$. Now, C_{s} is distance-3 from w; therefore, by assumption, $C_{s} \in \mathcal{K}_{3}^{o}$. Therefore, either $q, r, s \in C_{s}$ or $r, s, t \in C_{s}$. In both cases we have $n, y \notin D$. Then, by Proposition 3.4, we have $m \in D_{3^{+}}$. Let C_{m} be the 3^{+}-cluster at m. Since 2 of the 3 neighbors of m are not in D, we must have $k \in C_{m}$.

Figure 7.9a shows the surrounding vertices of v when neither (i) nor (ii) is satisfied and $m \in D$. All of the vertices except g, m, u, v, w and x have been relabelled.

Now, if $z \in D$, then $z \in D_{3^{+}}$. Let C_{z} be the 3^{+}-cluster at z. By assumption, (ii) is not satisfied, so $C_{z} \in \mathcal{K}_{3}^{o}$. Then w is in the hand position of an open 3 -cluster, C_{z}, such that the tail position is in D and w is on the finless side. Therefore, (iii) is satisfied.

Now assume (iii) is not satisfied. Then $z \notin D$ and $y \in D_{3^{+}}$. Let C_{y} be the 3^{+}-cluster at y. Since w is distance-3 from C_{y}, we have $C_{y} \in \mathcal{K}_{3}^{o}$. Let C_{m} be the 3^{+}-cluster at m. Then, m is a leaf of C_{m} and u is the only vertex in $D \backslash C_{m}$ at distance- 2 from m. If C_{m} is a linear 4-cluster, then either $q, r \in C_{m}$ or $l, k \in C_{m}$; in both cases, the one-turn position at distance- 2 from m is not in D. If C_{m} is a curved 4-cluster, then either $r, t \in C_{m}$ or $l, n \in C_{m}$; in both cases, the backwards position at distance- 2 from m is not in D. Therefore,

(a) Lemma 5.20 , where (i) and (ii) are not satisfied and $m \in D$.

(b) Lemma 5.20, where (i) and (ii) are not satisfied and $g \in D$.

Figure 7.9: Lemma 5.20
if $C_{m} \in \mathcal{K}_{4^{+}}$, then (iv) is satisfied.
Now assume (iv) is not satisfied. Then, $C_{m} \in \mathcal{K}_{3}$. Either $l \in C_{m}$ or $r \in C_{m}$; in both cases, u is in a foot or arm position. First, we consider the case in which $r \in C_{m}$. Then, $l, q, t \notin D$. If $n \notin D$, then $d, o \in D_{3^{+}}$ (Proposition 3.4). Since 2 of the 3 neighbors of o are not in D, we also have $f \in D_{3^{+}}$. Let $C_{f, o}$ be the 3^{+}-cluster at f and o. If $e \in D$, then $d, e, f, o \in C_{f, o}$ and $C_{f, o} \in \mathcal{K}_{4^{+}}$. If $e \notin D$, then $h \in C_{f, o}$ and d closes $C_{f, o}$. But, by hypothesis, v is not within distance-3 of a closed 3 -cluster or 4^{+}-cluster. Therefore, $n \in D$ and $C_{m} \in \mathcal{K}_{3}^{c}$. Then, C_{m} is type-2 paired with C_{y} and u is in the arm position on the closed side of C_{m}. Then, (v) is satisfied. Therefore, with $r \in D$, the lemma holds.

Now assume (v) is not satisfied. So we have $l \in C_{m}$. Recall $C_{m} \in \mathcal{K}_{3}$; therefore, $k, n, r \notin D$. Then, $f, o \in D_{3^{+}}$(Proposition 3.4). Again, let $C_{f, o}$ be the 3^{+}-cluster at f and o. Now, $C_{f, o}$ is distance- 3 from v, so we must have $C_{f, o} \in \mathcal{K}_{3}^{o}$. If $h \in C_{f, o}$, then the tail position of $C_{f, o}$ is in D and u is in the hand position on the finless side. But, by assumption, (iii) is not satisfied. Therefore, $e \in C_{f, o}$ and $d, h \notin D$. If $C_{f, o} \in \mathcal{K}_{3}^{c}$, then $C_{f, o}$ has at most 6 neary poor 1-clusters: $a / b, c, i / j, p / q, s / t$ and u. But, by assumption, (v) is not satisfied. So we have $C_{f, o} \in \mathcal{K}_{3}^{o}$. Then, $q, t \notin D$; therefore, $s \in D_{3^{+}}$. Let C_{s} be the 3^{+}-cluster at s. If C_{s} occupies the arm position of C_{y}, then w is in the hand position of an open 3 -cluster satisfying (vi).

Now assume (vi) is not satisfied. Then, then arm position of C_{y} is not in D. Therefore, u is in the foot position of an open 3-cluster which is type-1 paired on top. Therefore, (vii) is satisfied, and the lemma holds.

Now we return to Figure 7.8 b and consider the case for which $g \in D$ and $m \notin D$.
If $h \in D$, then $g, h \in D_{3^{+}}$and either $a \in D_{3^{+}}$or $f \in D_{3^{+}}$. In both cases, v is distance- 3 from a closed 3^{+}-cluster. Therefore, $h \notin D$. Then, by Proposition 3.4, we have $i \in D_{3^{+}}$. Let C_{i} be the 3^{+}-cluster at i. Since 2 of the 3 neighbors of i are not in D, we have $c \in C_{i}$ and i is a leaf of C_{i}. Therefore, $j \in D$ (Proposition 3.6). Now, C_{i} is distance-3 from v; therefore, $C_{i} \in \mathcal{K}_{3}^{o}$. Either $b \in C_{i}$ or $d \in C_{i}$. In both cases, we have $a, e \notin D$. Then, $g \in D_{3^{+}}$(Proposition 3.4). Let C_{g} be the 3^{+}-cluster at g. Since 2 of the 3 neighbors of g are not in D, we have $f \in C_{g}$. If $p \notin D$, then $n, s \in D_{3^{+}}$(Proposition 3.4). Let C_{s} be the 3^{+}-cluster at s. Since 2 of the 3 neighbors of s are not in D, we have $r \in C_{s}$. If $q \in D$, then $n, q, r, s \in C_{s}$ and $C_{s} \in \mathcal{K}_{4^{+}}$. If $q \notin D$, then $r, s, t \in C_{s}$ and n closes C_{s}. But s is distance- 3 from w and we assumed (ii) is not satisfied. Therefore, $p \in D$.

Figure 7.9 b shows the surrounding vertices of v when neither (i) nor (ii) is satisfied and $g \in D$. All of the vertices except g, m, u, v, w and x have been relabelled.

If $j \in D$, then $j \in D_{3^{+}}$. Let C_{j} be the 3^{+}-cluster at j. Since, C_{j} is distance- 3 from v, we must have $C_{j} \in \mathcal{K}_{3}^{o}$. Then, the tail position of C_{j} is in D and v is in the hand position on the finless side. Therefore, (iii) is satisfied.

Now assume (iii) is not satisfied. Then we have $i \in D_{3}^{o}$ and $j \notin D$. Let C_{i} be the open 3-cluster at i. Now, u is distance-2 from the 3^{+}-cluster at g; let C_{g} be this 3^{+}-cluster. Then, g is a leaf of C_{g} and u is the only distance-2 vertex of g in $D \backslash C_{g}$. If C_{g} is a linear 4-cluster, then either $n, p \in C_{g}$ or $e, f \in C_{g}$; in both cases, the one-turn position at distance-2 from g is not in D. If C_{g} is a curved 4-cluster then either $f, h \in C_{g}$ or $p, s \in C_{g}$; in both cases, the backwards position at distance- 2 from g is not in D. Therefore, if $C_{g} \in \mathcal{K}_{4^{+}}$, then (iv) is satisfied.

Now assume (iv) is not satisfied. Then, $C_{g} \in \mathcal{K}_{3}$. Either $f \in C_{g}$ or $p \in C_{g}$; in both cases, u is in a foot or arm position. First we consider the case in which $f \in C_{g}$. Then, $e, h, p \notin D$. If $s \notin D$, then $r, y \in D_{3^{+}}$ (Proposition 3.4). Let C_{y} be the 3^{+}-cluster at y. If $t \in D$, then $r, t \in C_{y}$ and $C_{y} \in \mathcal{K}_{4+}$. If $t \notin D$, then $z \in C_{y}$ and r closes C_{y}. In both cases, w is distance- 3 from a closed 3-cluster or 4^{+}-cluster. But we assumed that (ii) is not satisfied. Therefore, $s \in D$. Then, u is in an arm position on the closed side of C_{g}, and C_{g} is type-2 paired with C_{i}. Then, (v) is satisfied. Therefore, with $f \in D$, the lemma holds.

Now assume (v) is not satisfied. Then $f \notin D$. Therefore, $p \in C_{g}$ and $f, n, s \notin D$. Then, $y \in D_{3^{+}}$ (Proposition 3.4). Let C_{y} be the 3^{+}-cluster at y. Now, u is distance- 3 from C_{y} and we assumed (ii) is not satisfied. Therefore, $C_{y} \in \mathcal{K}_{3}^{o}$. If $z \in C_{y}$, then the tail position of C_{y} is in D and u is in the hand position on the finless side of C_{y}. But we assumed that (iii) is not satisfied. Therefore, $t \in C_{y}$. Now, if C_{g} is a closed 3 -cluster, then there are at most 6 nearby poor 1 -clusters: $b / h, a / e, d, k / l, q$ and u. But we assumed (v) is not satisfied. Therefore, $C_{g} \in \mathcal{K}_{3}^{o}$. Then, $h \notin D$. By Proposition 3.4, we have $b \in D_{3^{+}}$. If $c \in D$, then v is in the hand position of C_{i} and the hand and arm positions on the other side of C_{i} are both in D. Therefore, (vi) is satisfied.

Now assume (vi) is not satisfied. Then we have $c \notin D$. Therefore, u is in the foot position of an open 3 -cluster which is type-1 paired on top. Therefore, (vii) is satisfied and the lemma holds.

Proof of Corollary 5.22. Let x be in the x-position of v. Now, $v \in D_{1}^{v p}$; therefore, $u, w, x \in D_{1}^{p}$. Additionally, v is in a head position of an open 3-cluster, C_{0}, and w is in a shoulder position (Lemma 5.20). Let u, v, w, x and C_{0} be as shown in Figure 7.10a.

Suppose by contradiction that u is distance-2 from a very poor 1 -cluster other than v. There are 2 possibilities: $c \in D_{1}^{v p}$ or $h \in D_{1}^{v p}$. If $c \in D_{1}^{v p}$, then $d \notin D$ and $a \in D$ (Proposition 3.5). Then, $e \in D_{3^{+}}$ (Proposition 3.4). Let C_{e} be the 3^{+}-cluster at e. Either $a \in C_{e}$ or a closes C_{e}; in both cases c is within distance-3 of a closed 3 -cluster or 4^{+}-cluster. Therefore, $c \notin D_{1}^{v p}$. If $h \in D_{1}^{v p}$, then $k \notin D$ and $j \in D$ (Proposition 3.5). Then, $m \in D_{3^{+}}$(Proposition 3.4). Let C_{m} be the 3^{+}-cluster at m. Either $j \in C_{m}$ or j closes C_{m}; in both cases h is within distance-3 of a closed 3-cluster or 4^{+}-cluster. Therefore, $h \notin D_{1}^{v p}$.

Now, suppose by contradiction that w is distance- 2 from a very poor 1 -cluster other than v. The only possibility is u. If $u \in D_{1}^{v p}$, then $c \in D_{1}^{p}$ or $h \in D_{1}^{p}$. But we already saw that $c \in D_{1}^{p}$ or $h \in D_{1}^{p}$ implies $e \in D_{3}^{c} \cup D_{4^{+}}$or $m \in D_{3}^{c} \cup D_{4^{+}}$. Since u is distance- 3 from both e and m, we have $u \notin D_{1}^{v p}$.

(a) Corollary 5.22 and

Corollary 5.23

(b) Lemma 5.24

Figure 7.10

Proof of Corollary 5.23. Let v and x be as shown in Figure 7.10a. If $x \in D_{1}^{v p}$, then $g \in D_{1}^{p}$ or $i \in D_{1}^{p}$. If $g \in D_{1}^{p}$, then $f \notin D$ and $b \in D$ (Proposition 3.5). Therefore, $e \in D_{3^{+}}$(Proposition 3.4). Let C_{e} be
the 3^{+}-cluster at e. Either $b \in C_{e}$ or b closes C_{e}; in both cases, x is distance- 3 from a closed 3 -cluster or 4^{+}-cluster. But, by hypothesis, $v \in D_{1}^{v p}$. Therefore, $i \in D_{1}^{p}$. Therefore, x is in an asymmetric orientation and v is in the x-position of x.

Proof of Lemma 5.24. Let C be the open 3-cluster shown in Figure 7.10b, and let v be a very poor 1-cluster. Then, v is in a head position of C. Since $v \in D_{1}$, we have $b \in D$ (Proposition 3.5). Suppose by contradiction that $c \notin D$. Then, $a \in D_{3^{+}}$(Proposition 3.4). Then $v \in D_{1}^{v p}$ and v is distance- 2 from a 3^{+}-cluster, which is a contradiction. Therefore, $c \in D$.

Proof of Lemma 5.25. Let C_{1} be the open 3 -cluster described by j, k and m in Figure 7.11a. Then C_{1} is type-1 paired on top. Now, $e \in D_{3^{+}}$(Proposition 3.4). Let C_{e} be the 3^{+}-cluster at e. Since 2 of the 3 neighbors of e are not in D, we have $d \in C_{e}$. If C_{1} has a poor 1-cluster in a shoulder or arm position, then either $h \in D_{1}^{p}$ or $i \in D_{1}^{p}$.

First suppose $h \in D_{1}^{p}$. Then $c \in D$ (Proposition 3.5). Therefore, $c \in C_{e}$ and h is distance-2 from C_{e}. If $C_{e} \in \mathcal{K}_{3}^{o}$, then h is in a foot position and C_{e} is not paired.

Now suppose $i \in D_{1}^{p}$. Then $h \notin D$ (Corollary 4.2). Therefore, $c, g \in D_{3^{+}}$(Proposition 3.4). Let C_{g} be the 3^{+}-cluster at g. If $f \in D$, then i is distance- 2 from C_{g}. If $f \notin D$, then either $a, b, c, g \in C_{g}$ or c closes C_{g}; in both cases, i is distance-3 from a closed 3 -cluster or 4^{+}-cluster. Thus, if $C_{g} \in \mathcal{K}_{3}^{o}$, then $a, f, g \in C_{g}$. Then, c and i are in the shoulder positions of C_{g} and, hence, C_{g} is not type-1 paired on top.

(a) Lemma 5.25

(b) Lemma 5.26

Figure 7.11

Proof of Lemma 5.26. Let C_{1} be the type-2 paired closed 3-cluster shown in Figure 7.11b, and let C_{2} be the type-2 paired open 3 -cluster. Suppose by contrapositive that $n \notin D$ or $k \in D$. First, we deal with case in which $n \notin D$. Then C_{1} has 7 candidates for nearby poor 1-clusters: $a / d, b / c, e, f, g / h, i$ and j / k. It suffices to eliminate one of these candidates. If $k \notin D$, then $j \in D_{3^{+}}$(Proposition 3.4) and the lemma holds. If $k \notin D_{1}^{p}$, then the lemma holds; so assume $k \in D_{1}^{p}$. Then, $j \notin D$. If $h \notin D$, then $g \in D_{3^{+}}$(Proposition 3.4) and the lemma holds. If $h \notin D_{1}^{p}$, then the lemma holds; so assume $h \in D_{1}^{p}$. Then, $c \notin D$ (Corollary 4.2). If $b \notin D_{1}^{p}$, then the lemma holds; so assume $b \in D_{1}^{p}$. Then, $d \in D$ (Proposition 3.5). But then e is adjacent to a one-third vertex; therefore, e $\notin D_{1}^{p}$. Therefore, C_{1} does not have 7 nearby poor 1-clusters. Now, we deal with the case in which $k \in D$. Then, C_{1} has 7 candidates for nearby poor 1-clusters: $a / d, b / c, e, f, g / h, i$ and k. It suffices to eliminate one of these candidates. If $k \notin D_{1}^{p}$, then the lemma holds; so assume $k \in D_{1}^{p}$. Then, $j \notin D$. If $h \notin D$, then $g \in D_{3^{+}}$(Proposition 3.4) and the lemma holds; so assume $h \in D$. If $h \notin D_{1}^{p}$, then the lemma holds; so assume $h \in D_{1}^{p}$. Then, $c \notin D$ (Corollary 4.2). If $b \notin D_{1}^{p}$, then the lemma holds; so assume $b \in D_{1}^{p}$. Then, $d \in D$ (Proposition 3.5). But then e is adjacent to a one-third vertex; therefore, $e \notin D_{1}^{p}$. Therefore, C_{1} does not have 7 nearby poor 1-clusters.

If $n \in D_{1}^{p}$, then $m \notin D$ and $r \notin D$ (Corollary 4.2). Then, $q, t \in D_{3^{+}}$(Proposition 3.4). Let C_{q} be the 3^{+}-cluster at q. If $C_{q} \in \mathcal{K}_{3}^{o}$, then $p, q, s \in C_{q}$. However, n and t are in shoulder positions; therefore, C_{q} is not type-1 paired on top. If $C_{q} \notin \mathcal{K}_{3}^{o}$, then n closes C_{q} or t closes C_{q} or $t \in C_{q}$; in each case, n is nearby a closed 3 -cluster or 4^{+}-cluster.

Acknowledgement

We would like to thank Chase Albert for his help in constructing the first two codes shown in Figure 1.1 and David Phillips for introducing us to the integer programming techniques which led to these constructions. We would also like to thank Jeff Soosiah for his help in constructing the third code in Figure 1.1 and for his support in the early stages of this project.

References

[1] Y. Ben-Haim, S. Litsyn, Exact minimum density of codes identifying vertices in the square grid, SIAM J. Discrete Math., 19 (2005), no. 1, 69-82.
[2] G. Cohen, S. Gravier, I. Honkala, A. Lobstein, M. Mollard, C. Payan, G. Zémor, Improved Identifying Codes for the Grid, Comments on R19, Electronic Journal of Combinatorics, Vol. 6 (1999), http: //www.combinatorics.org/Volume_6/Html/v6ilr19.html
[3] G.D. Cohen, I. Honkala, A. Lobstein and G. Zémor, Bounds for Codes Identifying Vertices in the Hexagonal Grid, SIAM J. Discrete Math., 13 (2000), pp. 492-504.
[4] D.W. Cranston and G. Yu, A New Lower Bound on the Density of Vertex Identifying Codes for the Infinite Hexagonal Grid, Electronic Journal of Combinatorics, Vol. 16 (2009), http://www. combinatorics.org/ Volume_16/PDF/v16i1r113.pdf.
[5] M.G. Karpovsky, K. Chakrabarty, L.B. Levitin, On a new class of codes for identifying vertices in graphs, IEEE Trans. Inform. Theory 44 (1998) 599-611.
[6] R. Martin and B. Stanton, Lower bounds for identifying codes in some infinite grids, Electronic Journal of Combinatorics, Vol. 17 (2010), http://www.combinatorics.org/Volume_17/PDF/v17i1r122.pdf
[7] B. Stanton, Improved bounds for r-identifying codes of the hex grid, Preprint.

[^0]: *The research is part of the first author's honors project at the College of William and Mary and is supported by NSF CSUMS grant DMS-0703532. The second author's research is also supported by NSF grant DMS-0852452.

